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1 Einleitung

Das Werfen von Speeren und Pfeilen als technische Jagd-Kunst hat die
Menschheit schon seit Jahrtausenden beschéftigt und fasziniert. Aus rein
empirischer Erfahrung hat man es hier sicherlich zu hoher Fertigkeit ge-
bracht. Das heute benutzte Wort Ballistik kommt aus dem Griechischen,
von ballein — Werfen. Die Entwicklung der Ballistik als Wissenschaft
wurde in Westeuropa erst zu Beginn des sechzehnten Jahrhunderts stér-
ker vorangetrieben. Hauptmotivation war natiirlich die Frage, wie man
Kanonenkugeln moglichst genau ins Ziel bringt und von welchen Faktoren
dies abhéngt. Und hier war zundchst die genaue Gestalt der Flugbahn
von Interesse. Die besten Gelehrten und Mathematiker ihrer Zeit waren
mit dem Problem dieser ballistischen Kurve beschéftigt: TARTAGLIA,
G. GALILEL, I. NEWTON, J. BERNOULLI, F. BACON, L. EULER, J.L.
LAMBERT, L. LEGENDRE, S.D. Po1ssoN, und F. SiAcci, um nur Ei-
nige zu nennen. Doch was ist von ihren analytischen Ergebnissen heute
noch bekannt, wo moderne Hochfrequenz - Radaranlagen jede Flugbahn
genaustens vermessen konnen, aber das Schulwissen gerade noch die
Wurfparabel begreift?

Obwohl schon um 1300 die ersten Feuerwaffen in Europa auftauchten,
wusste man noch um 1500 nicht sicher, dass die Form der Flugbahn
einer Kanonenkugel wirklich eine kontinuierliche Kurve ist. Nach den
Lehren des ARISTOTELES sollte die Kanonenkugel mehr oder weniger
in einer geraden Linie in die Luft steigen, dann plotzlich stoppen und
in senkrechtem Fall zum Erdboden zuriickfallen (Impetustheorie). Dann
aber schrieb im Jahre 1537 der italienische Mathematiker TARTAGLIA'
ein Buch tiber Artilleristik (Nova Scientia), indem er darauf hinwies, daf3
die Geschossbahn eine kontinuierliche Kurve sei, eine zur damaligen Zeit
noch gewagte Behauptung. In einem zweiten Buch (Quesiti et Inventioni

INicolo Tartaglia (1499-1557), eigentlich Nicolo Fontana, italienischer Mathematiker,
Physiker und Topograph. Tartaglia heifit der Stotterer, weil er 1512 von einem
Schwert im Gesicht verletzt wurde. Ihm gelang zum erstenmal die Lésung einer
speziellen kubischen Gleichung.



Fig. 1.1: Ballistische Kurven aus dem Buche ,Nova Scientia“ des italie-
nischen Mathematikers Nicolo Tartaglia aus dem Jahre 1537. Deutlich ist
hier noch der Einfluss der ,Impetustheorie® zu sehen. Diese mathematisch -
philosophische Vorstellung geht auf den Scholastiker Albert von Rickmersdorf
(1316 - 1390) zurick und hat wohl noch dlteren Ursprung.

diverse) aus dem Jahre 1546 erlauterte er diese Frage noch eingehender.
Als Berater fiir militarische Fragen der Stadt Verona wurde er gefragt,
unter welchem Winkel eine Geschossbahn maximale Reichweite
erzielt. Durch experimentelle Tests im ebenen Gelénde stellte er dann fest,
daf} dieser Winkel nahe 45 Grad ist. Fiir die damaligen Geschwindigkeiten
war das ein realistisches Resultat.

Der Erste, der die Flugbahn als eine parabelférmige Kurve ansah, war
GALILEO GALILEL Er argumentiert in seinem Werk Der Dialog iber die
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Fig. 1.2: In dem Buch ,,Nova Scientia® des italienischen Mathematikers
NICOLO TARTAGLIA aus dem Jahre 1537 erscheint die ballistische Kurve schon
als kontinuierliche Kurve: Zundchst als eine Gerade, dann geht sie allmdhlich
in einem Bogen in eine senkrechte Gerade (senkrechte Asymptote) zum
Boden tber. 1687 nahm I. NEWTON an, dass dies sehr gut einer Hyperbel
entspricht.

zwei Weltsysteme von 1632, dass im Vakuum die Flugbahn eine Parabel
sein miisse. Im Jahre 1644 veroffentlichte EVANGELISTA TORRICELLI
(1608-1647) in seinem Hauptwerk Opera Geometrica([61])? den Teil De
motu gravium .... Hier verallgemeinert er die von GALILEI formulierte
horizontale Theorie der Wurfparabel auf beliebige Abwurfwinkel und gibt
eine Tabelle fiir die Wurfweiten an. Seine Theorie ergab fiir diesen Winkel
exakt 45 Grad, in gliicklicher Ubereinstimmung mit den Messungen von
TARTAGLIA aus dem Jahre 1537.

Im Jahre 1740 wurden in England von BENJAMIN ROBINS (1707-1751)
mit dem ballistischen Pendel Messungen von Geschossgeschwindigkeiten
gemacht. Die Ergebnisse lagen bei 400 m/s - 600 m/s, ein fiir damalige Zeit
unglaublich hoher Wert. Die Ergebnisse erschienen in seinem Werk New

2Berithmt ist dieses Werk von Torricelli auch durch die Betrachtung eines unendlich
langen Rotationskérpers (Trompete von Torricelli), welcher zwar ein endliches
Volumen - Maf, aber ein unendliches Oberflichen - Maf3 hat.
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Fig. 1.3: Die Erkldrung der Wurfparabel nach EVANGELISTAE TORRICELLI
1644. In der mittleren Spalte der Tabelle sind die Wurfweiten in der Form
10000 sin(20) eingetragen, wobei © den Elevationswinkel des Kanonenrohres
be%eichnet. Die Wurfweite ist invariant gegeniber der Transformation © —
90 — ©.

Principles of Gunnery (1742), fur welches er 1746 die Copley Medaille
erhielt, die héchste Auszeichnung der Royal Society. Das Werk erlangte
im 18. Jahrhundert grofle Bedeutung und wurde in verschiedene Sprachen
iibersetzt und erweitert (L. EULER, 1745). So schrieb fiir die franzosische
Ausgabe der Okonom und Politiker A. R. J. TUrRcOT (1727-1781) an
Louis XVI: (Zitat durch Clifford Truesdell, An Idiot’s Fugitive Essays
on Science (1984), p. 337)

The famous Leonhard Euler, one of the greatest mathemati-
cians of Furope, has written two works which could be very
useful to the schools of the Navy and the Artillery. One is a
Treatise on the Construction and Manoeuver of Vessels; the
other is a commentary on the principles of artillery of Robins
... I propose that your Majesty order these to be printed.

Denn L. EULER hatte das Buch von ROBINS mit erheblichen mathemati-



schen Erganzungen (Lehrsdtze der Artillerie 1745) ins Deutsche iibersetzt
und so seinen Wert erheblich gesteigert. 1766 verdffentlichte dann J.H.
LAMBERT eine eigene theoretische Untersuchung und konstruierte eine
sogenannte ,echelle ballistique®“. J. LAMBERT zeigte 1766, dass man bei
der Auswertung mit dem ballistischen Pendel nicht mit elastischen Sté8en,
sondern eher mit inelastischen Sté8en zu tun hat. Noch unglaublicher
war dann die Messung der Geschossabbremsung durch den Luftwider-
stand. Nun erkannte man die Bedeutung des Luftwiderstandes bei hohen
Geschwindigkeiten.

I. NEWTON hatte schon 1687 gezeigt, dal die Bremskrafte mit dem
Quadrat der Geschwindigkeit ansteigen miissten. Doch eine genauere
Losung gab er nicht an. Die erste allgemeine analytische Losung des
ballistischen Problems wurde durch J. BERNOULLI im Mai - Heft der Acta
Eruditorum Lipsiae Seite 246 des Jahres 1719 gegeben. Die Motivation
zu dieser Untersuchung entstand offenbar durch eine ,,Provokation“ des
schottischen Mathematikers und Astronomen J. KEILL, der es BERNOULLI
sehr Ubel nahm, dass ein Mathematiker minderen Ranges (Bernoulli)
einem Mathematiker hochsten Ranges (Newton) einen kleinen Fehler in
der ersten Ausgabe seiner Principia bei der geometrischen Konstruktion
einer ballistischen Flugbahn nachgewiesen hat. J. BERNOULLI nahm fiir
die Bremsbeschleunigung des Luftwiderstandes ein Gesetz der Form v™ an
und erhielt fiir die ballistische Kurve bei beliebigem n die parametrische
Darstellung in horizontaler x - Richtung und in vertikaler y - Richtung

. dp _ . [ pdp
v=a | g v=] gim (1)
mit

Z(p) :b/(1+p2)<"—1>/2dp. (1.2)

Das Problem kann also auf eine einzige Quadratur (Integral) zuriickge-
fithrt werden, was dann aber G.F. TEMPELHOF 1781 zu der Bemerkung
veranlasste, dass diese Losung sich nicht ohne die Bedingung der ,,con-
cessis quadraturis® berechnen lieff. Schliefllich 16sten J. BERNOULLI 1719
und L. EULER 1743 das ballistische Problem mit Hilfe der Differenti-
alrechnung fiir ein erweitertes quadratisches Widerstandsgesetz. Einen
gewissen Schlusspunkt setzte dann der schon oben erwidhnte Generalleut-
nant G. F. TEMPELHOF mit seinem Werk Le Bombadier Prussien von
1781, welches von FRIEDRICH DEM GROSSEN sofort unter militdrische



Fig. 1.4: Die Zarenkanone (Mdrser) von 1586, wie sie heute am Kreml
in Moskau zu sehen ist. Die Kugeln wurden spater (1834) zur Dekoration
gegossen. Kaliber 890mm. Quelle: Wikipedia Commons)

Geheimsache gestellt wurde. Die Griinde sind nicht ganz klar, zumal in
diesem Buch komplizierte ldngliche Reihenentwicklungen zur Darstellung
der ballistischen Kurve benutzt werden, deren praktische Verwendbarkeit
hochst zweifelhaft war und wohl auch nie numerisch ausgewertet wurden
— ganz im Gegensatz zu denen von J.H. LAMBERT. Klassische Lehrbiicher
zur Ballistik schrieben schliellich I. DIDION 1848 in Frankreich und
F. Siacct 1888 in Italien und C. CRANZ von 1896 an in Deutschland
([16])%. Ab 1942 wurde in den USA der Rockefeller Differential Analyser,
der letzte am MIT von dem amerikanischen Erfinder VANNEVAR BUSH
entwickelte rein mechanische Walzen - Analog - Rechner, dazu benutzt,
die nichtlinearen Differentialgleichungen der Ballistik fiir unterschiedliche
Spezialfille wie Bombenabwurf und Flugabwehr zu 16sen.

3CARL JuLius CRANZ (1858 - 1945). Wuchs in einer Pfarrersfamilie auf. Privatdozent
fiir Mathematik und Mechanik an der TH Stuttgart (1884-1903), Professor an der
Militdrtechnische Akademie (1903-1920) in Berlin, Professor fiir technische Physik
an der TH Berlin (1929-1935) sowie Wissenschaftlicher Berater der chinesischen
Regierung in Nanking (1935-1937)



Wie man lesen kann, hat das ballistische Problem weitgehende An-
wendungen in der Geschichte erfahren: Seien es die Bahnen von Kano-
nenkugeln, von Tennisbéllen, von Golfbéllen, von Fufibéllen (mit dem
Magnuseffekt bei rotierenden Béllen), von Raumfahrzeugen oder von auf
die Erde stiirzenden Meteoriten — iiberall spielt das ballistische Problem
in unterschiedlichen Ausprigungen eine Rolle.

Ein besonderes isoliertes Problem stellten zu Beginn des 19. Jahrhun-
derts Experimente mit fallenden Kugeln in hohen Tiirmen oder tiefen
Bergwerksschéichten dar, die aufgrund der Erdrotation eine sehr kleine
,Ostablenkung* erfuhren. Da diese ,,Ostablenkung® ein direkter mecha-
nischer Beweis der Erdrotation darstellte (das Foucaultpendel kam ja
erst spiter), hat man damals viel Miihe auf die genaue Beriicksichtigung
des Luftwiderstandes auf diese fallenden Kugeln verwandt. Hier sind
insbesondere die Untersuchungen von J.F. BENZENBERG, P.S. LAPLACE
sowie von C.F. GAUSS um 1802 zu nennen.



2 Grundgleichungen

Im 17. Jahrhundert konnte man mit der neuen Differentialrechnung vier
grofle Kurvenprobleme angehen und 16sen:

o Bahnkurve der Planeten um die Sonne (Kegelschnitte)
o Die Kettenlinie (Form eines héngenden Seiles)
o Das Brachystochrone Problem (minimale Rollkurven)

o Die Bahnkurve einer Kanonenkugel (Wurfparabel nach Torricelli -
Galilei oder Hyperbel nach Newton)

Von all diesen Kurvenproblemen ist das ballistische Problem (Wurfbe-
wegung mit Luftwiderstand) das Schwierigste. Selbst I. NEWTON hatte
mit diesem Problem seine Schwierigkeiten, denn seine geometrische Kon-
struktion der ballistischen Kurve als Hyperbel in der ersten Auflage
der Principia war nur eine Approximation, keine exakte Losung einer
Differentialgleichung. Im Laufe des 18. Jahrhunderts konnten fiir das
quadratische Luftwiderstandsgesetz allerdings Reihenentwicklungen oder
gendherte analytische Losungen gefunden werden.

Im Folgenden soll das klassische Problem der dufleren Ballistik mit
besonderer Beriicksichtigung des 18. Jahrhunderts diskutiert werden. Als
Anregung diente hier auch ein Kapitel aus dem Lehrbuch zur Geschichte
der mechanischen Prinzipien von I. Szabo ([55]).

Ist der Luftwiderstand eine quadratische Funktion der Geschwindig-
keit v = |v|, so lauten die allgemeinen Bewegungsgleichungen fiir eine
rotierende Kanonenkugel im Erdschwerefeld bei volliger Windstille

V=—kvv+te(wxv)—g (2.1)

Hier bedeutet k den ballistischen Koeffizienten von der Dimension einer
inversen Lénge und das vektorielle Kreuzprodukt w x v die Beschleu-
nigung durch den sogenannten Magnuseffekt([35], [14]). Der Vektor w



liegt parallel zur Rotationsachse der Kanonenkugel und sein Betrag ent-
spricht der Winkelgeschwindigkeit der rotierenden Kugel. Der Vektor
g ={0,0, g} beschreibt die zum Boden gerichtete Erdbeschleunigung. e
ist eine dimensionslose Konstante, die in der Gréenordnung

e v ZLuft (2.2)
OKugel

liegt. Kompliziertere Situationen entstehen bei schneller Rotation, wenn
das Geschoss nicht mehr eine Kugel, sondern lédngliche Gestalt hat (Krei-
seldynamik)’. Die Querbeschleunigung, beschrieben in der obigen Be-
wegungsgleichung durch den Term w x v, war die Hauptursache fiir die
mysteridsen Seitenabweichungen oder Weitenvariationen bei ballistischen
Kurven, die man sich im 18. Jahrhundert noch nicht richtig erkléren
konnte. Die richtige Vermutung aus zahllosen Experimenten hatte schon
der englische Militaringenieur B. ROBINS (1702 - 1751) , der auch schon
vorschlug, dass Kanonen gezogene Rohre haben sollten ([15]).

Die Preuflische Akademie der Wissenschaften hatte noch im November
1793 ein Preisausschreiben zu diesem Thema vorgeschlagen. Darin hiefl

est ([40])

Da die Erfahrung lehrt, dass die in einem widerstehenden
Mittel geworfenen Kérper, Bomben, zum Beispiel, sich meis-
tens mehr oder weniger von der lochtrechten Ebene entfernen,
in welche sie geworfen werden; so verlangt die Konigliche
Akademie zu wissen: 1) Wie und aus welchen Ursachen diese
Abweichung statt findet? II) Wie ihre Quantitit in jedem ein-
zelnen Falle, mittels der anfinglichen Geschwindigkeit, des
FElevationswinkels, der Gestalt des Kérpers w.s.w. bestimmt
werden kann.

Den Preis erhielt damals der Artillerieleutnant J.P. voN ROHDE (1759-
1834), der aber irrtiimlich die Abweichungen anstatt der Eigenrotation
der geworfenen Korper den Windkréften und besonders den Ziindern
zuschrieb. Als Rechtfertigung fiir die Vergabe des Preises an J.P. VON
ROHDE gab die Akademie erklirend an:

INoch komplizierter ist die gekoppelte Bahn - Kreiseldynamik des von den Menschen
seit iiber 20000 Jahre benutzten Bumerangs



Die Akademie erkennet, dass die Aufgabe, welche zur ge-
genwdartigen (unter dem 12. Februar 179/ eingekommenen,)
Abhandlung Anlass gegeben hat, sehr schwer aufzulosen ist;.
Auch sind die aufgeworfenen Fragen bey weitem noch nicht
vollig beantwortet. Die Erfahrung lehret, dass bei Kugeln ohne
Zinder ebenfalls eine betrdchtliche Abweichung stattfindet.
Indessen konnte die Akademie nicht unterlassen diese Schrift
zu kronen, aus welcher viel Scharfsinn und tiefe Finsichten
in die hohere Mathematik hervorleuchten, und durch welche
die Bahn zu ferneren Untersuchungen auf eine glickliche Art
eroffnet worden.

Eine zufriedenstellende physikalische Erklarung fiir diese Abweichung
ballistischer Bahnen konnte erst 1852 der Physiker H.G. MAcGNUS (1802-
1870) geben. Aber auch die rein mathematische Beschreibung ist nicht
einfach und bedarf - wie oben zu sehen - der Vektoralgebra. Wir definieren
den dreidimensionalen Tangentenvektor e der Bahn und dessen zeitliche
Anderung & gemif

vV=ue; v=7e+vé. (2.3)
Einsetzen in die obige Gleichung ergibt

tet+vé=—kvletev(wxe)+g (2.4)

Skalare Multiplikation mit e fiihrt fir v zu der Gleichung
v=—kv’t+eog. (2.5)
Setzt man dies wieder in die obige Gleichung ein, so folgt die Relation
vé=+ev (wxe)+g—e(eog). (2.6)

Der Vektor €& steht senkrecht auf dem Tangentenvektor e und es gilt
eoé = (. Anstatt nach der Zeit differenzieren wir nun nach der Bogenlénge
5. Wegen ds = v dt gilt so auch

5 de

v Ez—i—ev(wxe)—&—g—e(eog). (2.7)



Diese Gleichung definiert die Kriimmung K = 1/r der ballistischen Kurve.
Multiplizieren wir (2.6) noch skalar mit g x e, so gilt fiir das Spatprodukt

[geé]=€¢(wxe)o(gxe). (2.8)

Ohne Eigenrotation bewegt sich die Kugel immer entlang der lotrechten
Ebene, die durch die Vektoren e und g aufgespannt werden. Mit Rotation
gilt dies aber nicht mehr, wie die obige Vektorgleichung zeigt. Abweichun-
gen von der Flugbahn kénnen je nach Rotationssinn sowohl nach Rechts
wie nach Links geschehen. Es kénnen aber auch kiinstlich ,, Auftriebe
oder ,,Abtriebe“ ohne seitliche Abweichungen entstehen. Abhilfe kann nur
dadurch erreicht werden, dass der Rotationsvektor w der Kanonenkugel
moglichst exakt parallel zum Geschwindigkeitsvektor v ausgerichtet wird.
Genau dies wurde ab der Mitte des 19ten Jahrhunderts durch gezogene
Rohre mit Fiihrungsrillen erreicht.

Der ,,Magnuseffekt spielt heutzutage bei sehr unterschiedlichen Sport-
arten eine wichtige Rolle: Fufiball (Bananenflanke, Flatterball), Tennis
- Tischtennis (Topspin, Slice), und Cricket (spin bowling). Golfbélle
besitzen sogenannte dimples, kleine kreisférmige Dellen an der Ballo-
berflache, welche die Wirksamkeit des ,,Magnuseffektes“ noch erhchen.
Um den Riickstofl bei einem Geschiitz zu vermindern und damit die
Genauigkeit zu erh6hen, wurden zudem im 20. Jahrhundert sogenannte
Mindungsbremsen (,muzzle brakes“) an das Rohrende montiert. Ausfiihr-
lich werden solche verwickelten Fragen in dem modernen Standardwerk
von R.L. Mccoy iiber dulere Ballistik behandelt ([34]).

Wir beschrénken uns zundchst auf Flugbahnen von nicht - rotierenden
Korpern, bei denen das Spatprodukt [g e é] immer Null ist. Sonderfille wie
die Flugbahn eines rotierenden Fufiballes oder eines schnell rotierenden
Golfballes werden gesondert behandelt. Die x— Achse unseres lokalen
Koordinatensystems zeigt immer in horizontale, die y— Achse immer
in vertikale Richtung. Dann gelten bei Windstille und quadratischem
Widerstandsgesetz die zwei Gleichungen

%z(a—kv2)§, g'j:(a—kUQ)y—g (2.9)

v v
wobei k der ballistische Brems-Koeffizient (drag force) in der Einheit
einer inversen Lange und g die Fallbeschleunigung bezeichnen. Die Gréfe
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Fig. 2.1: Der Ingenieur und Architekt NICOLAS FRANCOIS BLONDEL (1618 -
1686) schrieb das erste ausfihrliche Werk iber ,die Kunst, Bomben zu werfen*
Er benutzte schon die parabolische Kurventheorie nach Galilei und Torricelli,
um die ballistische Kurve zu beschreiben. Fur die damaligen Geschwindigkeiten
eine gute Ndherung.

a beschreibt eine Eigenbeschleunigung des Geschosses in Richtung der
momentanen Bahntangente. Wir sehen hier schon den flieBenden Uber-
gang von klassischer Ballistik zur Raketenballistik, zumal in umgekehrter
Zeitrichtung betrachtet eine bremsende Bewegung wie eine beschleunigte
Bewegung erscheint und auch so beschrieben werden kann.



3 Die Wurfparabel

Bevor wir die Wirkung einer bremsenden Kraft auf die Flugbahn genauer
untersuchen, wollen wir den einfachsten Fall zuerst behandeln. Ohne
Luftwiderstand gelten die sehr einfachen Bewegungsgleichungen

=0, §=-—g. (3.1)

Als Losungen erhédlt man die schon von GALILEI und TORRICELLI disku-
tierte Wurfparabel. Man bekommt fiir die Bahnkurve als Funktion der
Zeit t die Gleichungen

z[t] = v cos[O]t,
1
ylt] = wo sin[O]t — 3 gt? (3.2)
und fir die Gestalt der Bahn die Parabel
gz

ylz] = tan[@]m—m.

Dabei ist © der Elevationswinkel, vy die Abschussgeschwindigkeit und ¢
die verflossene Zeit. Die Wurfweite W ergibt sich bei ebener Bodenfliche
zu

v2
W:ﬁgm@. (3.3)

Hieraus folgt sofort die maximale Schussweite bei einem Elevationswinkel
von 0 = 45°. Die maximale Steighthe H ergibt sich zu

H=2 sin[©]? (3.4)



und die Flugzeit T zu

= 2& sin
T == 2 sin[6)] (3.5)

Aus den beiden letzteren Formeln folgt die fiir alle Wurfparabeln giiltige
Beziehung

1
H= 3 gT?. (3.6)

Diese Relation' gehért zu den bemerkenswertesten Formeln der Ballistik,
weil sie auch mit Luftwiderstand noch eine sehr gute Naherung darstellt.
Selbst in der Raketenballistik spielt sie eine gewisse Rolle, wie wir spéater
noch sehen werden.

Aus der obigen parabolischen Theorie kann man zudem noch die
Beziehung

%gﬂ =W tan[©)] (3.7)

ableiten, welche im 18. Jahrhundert fir die Linge von Brandréhren
wichtig war. So liest man bei J. VEGA den Satz ([63]): Die Quadrate der
Brandréhrenlingen verhalten sich gegeneinander wie die Produkte aus
den Wurfweiten multipliziert mit den Tangenten der Elevationswinkel
vom Horizonte...

Hat die Normale der ebenen Bodenfliche zum gravitativen Lot eine
kleine Neigung o (a < 0 Gefille, a > 0 Steigung), so ist die Wurfweite
auf dieser geneigten Flache durch den Ausdruck

W 203 cos[O]sin[O — q
cos[a] g cos[a]?

(3.8)

gegeben. Diese Formel 16st das Problem des franzosischen Baumeisters
und Ingenieurs N.F. BLONDEL (1618-1686) (siche Fig. 2.1). Maximal
wird diese Schussweite im geneigten Geldnde bei der Elevation

T«

Tn England auch SrADENsche Formel genannt, wohl nach E.B. SLADEN (1831-1890)
benannt, der in Indien als Offizier diente.




Custe: Deutsche Fotothek

Fig. 3.1: Eine Illustration aus dem Buch ARCHITECTUR von WALTHER
HERMENIUS RYFF, Niirnberg 1547. Insbesondere hier tiber die ,mathemati-
schen® und ,mechanischen® Kinste. (Quelle: wikimedia.commons)

welches die Winkelhalbierende zwischen dem gravitativen Lot und der
geneigten Bodenfldche beschreibt. Der relative Elevationswinkel O, in
Bezug auf die geneigte Ebene ist also ©, = © — «. Um 1900 stellte man
sich die Aufgabe, bei welchen identischen Winkeln ©, und © die Schuss-
weite im ebenen und geneigten Geldnde identisch ist. Diese Forderung
fiihrt zu der Gleichung

cos[® + a] = cos[O] cos[a]? (3.10)

Diese implizite Relation hat nur fiir Neigungswinkel o > 0 ansteigendes
Gelinde zwei Losungszweige, die in Figur (3.2) dargestellt sind. Der
kritische Grenzwinkel fiir die Elevation ist dabei

cos[O.] =1/ # ~ 16.714°, (3.11)

was einem ansteigenden Geléndewinkel o von

-1
coslae] = \/52 ~ 51.827° (3.12)
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Fig. 3.2: Die beiden Losungszweige der impliziten Relation (3.10).
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entspricht. Eine weitere Komplizierung des so behandelten Problems tritt
ein, wenn das Ziel selber beweglich ist (FLAK). Historische Probleme
dieser Art kénnen nur noch iterativ gelost werden.

Zur Abrundung sollen vier ausgewihlte Aufgaben zur Wurfparabel
diskutiert werden, die zum Teil von C. CRANZ in seinem Lehrbuch ([16])
diskutiert wurden.

Optimale Parabel: Ist es moglich, von der Spitze der Cheopspyramide
aus mit einem Stein iber die Basis der Pyramide hinaus zu werfen?

Dies bertihmte Problem lduft darauf hinaus, den optimalen Weitwurf
von einer Anhche H zu bewerkstelligen (Analogie im Sport: Kugelsto-
Sen). In umgekehrter Zeitrichtung betrachtet entspricht diese Aufgabe
dem Problem, mit minimaler Geschwindigkeit oder mit dem geringsten
Energieaufwand eine Anhéhe H in der horizontalen Entfernung W zu
treffen.

Wir untersuchen das Problem mit den parametrischen Gleichungen

x[t] = vy cos[b1] ¢, y[t] = H + vy sinf6h]t — %th. (3.13)

Die Groflen v und 6y bedeuten die Geschwindigkeit und den Abgangs-
winkel auf der Anhéhe H. Aus der Bedingung y[T] = 0 folgt fiir die



W

Fig. 3.3: Der optimale Wurf von einer Anhéhe H, wenn die Weite W
vorgegeben ist. Es gilt ©1 = 7/4 — a/2 und O = 7w/4 + /2. Auch die
optimale Abwurfgeschwindigkeit wird durch H und W eindeutig bestimmit.
Vergleiche hierzu die Figur von BLONDEL aus dem 17. Jahrhundert (2.1).

Flugzeit bis zum Boden

= — sin[64] + \/— sin[6q]? (3.14)

Die Aufprallgeschwindigkeit ergibt sich zu Energlesatz)

vy =/vi+2gH. (3.15)

Die Wurfweite W ergibt sich mit der Flugzeit T zu (0 < 6; < 7/2)

W = %1 cos|[f] (U1 sin[f] + \/vf sin[01]2 + QgH) . (3.16)

Maximal wird diese Wurfweite bei dem Abgangswinkel §; = 07 und dem
dazugehorigen Aufprallwinkel 2 = ©2 und (3.15)

H H
cos[20] = . cos[20,] = J

= ——7. 3.17
gH +v3’ gH —v3 (8:17)



Die erste Formel 16st hier das Problem beim Kugelstolen, wenn bei
vorgegebener Geschwindigkeit v; und H der optimale Abgangswinkel
gesucht wird. Einsetzen der optimalen Winkel in die Wurfweite fithrt nun
zu den beiden Beziehungen

N e N e P
g g

Werden diese Gleichungen nach v, und vy aufgelést, ergeben sich die wich-
tigen Relationen fiir die optimalen (minimalen) Abwurfgeschwindigkeiten

auf der Anhohe
v = \/g (\/WQ Y H? - H) (3.19)

sowie am Boden

o = \/g (\/W2 T H? 4+ H). (3.20)

Werden diese Ergebnisse in die Formeln (3.17) eingesetzt, so ergibt sich

tan[2©4] = %, tan[2 @3] = —% (3.21)
mit der Bilanz ©; + ©2 = 7/2. Fiihrt man noch den Béschungswinkel
tan[a] = A
W
ein, so gilt auch
@1:2—%, @2:%+%. (3.22)

Im Falle H = 0 ergibt sich die bekannte Forderung ©; = 0, = 45° und

v1 = vy =+/gW, fiir W =0 dagegen v; =0 und vo = /29 H.
Die Flugzeit T' dieser energetisch gilinstigsten Parabelbahn von der
Anhohe zum Boden (oder umgekehrt) ergibt sich aus den obigen Formeln

zu 1
VH2+W?2= 3 gT?. (3.23)

Der horizontale Abstand W,,, der maximalen Flughéhe zum Abgangsort
ist durch die Beziehung

1 H
Wy=-W(1l- ——— 3.24
2 ( \/H2+W2> (3.24)



gegeben. Fir die maximale Flughohe H,, erhalten wir mit Hilfe der
Flugzeit T o
(2H+¢T?)
H,=—>""—. 3.25
Im Falle H = 0 erhalten wir wieder die bekannte Relation zwischen der
Gipfelhohe und der Flugzeit in einer flachen Ebene - dann allerdings fiir
alle Abgangswinkel 6 giiltig.
Mit H = 137.2m und W = 113.75m erhélt man in der Aufgabe

©; =19.83°%, ©3=70.17°; wv; =20.06 m/s, vy =55.63m/s.

Da als typische Geschwindigkeit der Werfer etwa 24m/s angenommen
wird (statistisches Mittel), konnte zumindest ohne Luftwiderstand dieser
Wurf gelingen.

Das Treffen einer Tonscheibe: FEine Wurfmaschine hat eine Tonscheibe
in die Luft geworfen. Zum Zeitpunkt t = 0 stellt ein Schiitze fest, dass
sich diese Scheibe in der Héhe H und in der horizontalen Entfernung W
befindet und er sich exakt in der Bahnebene befindet. Ihre Geschwindigkeit
betrigt dabei vr und die Elevation sei Or (T: Target). Im gleichen Zeit-
punkt t = 0 feuert der Schiitze eine Kugel, dessen Anfangsgeschwindigkeit
vp betrdigt, ab. Welche FElevation 0p muss der Schiitze wdhlen, damit ein
Treffer in der Luft gelingt? (P: Projektil) Die Aufgabe kann auch als
Abfangproblem einer Rakete durch eine andere Rakete aufgefasst werden.
Wir nehmen hier idealisiert an, dass beide Korper Parabelbahnen in der
gleichen vertikalen Ebene ausfiihren. Der Luftwiderstand soll vernachlés-
sigt werden. Da beide Korper eine Wurfparabel beschreiben, haben wir fiir
eine Kollision die notwendigen und hinreichenden Bedingungsgleichungen

vr coslfr]t. = W —up coslfp]t.,
1 1
H + vr sin[f7]t. — 3 gt> = wvpsin[@p]t. — B gt?

Damit ist ein einfaches Abfangproblem definiert, bei der beide Flugbah-
nen Parabeln sind. Gefragt ist nach dem kritischen Abschusswinkel 6p
und dem Zeitpunkt ¢. der Kollision oder des Treffers. Da beide Geschosse
derselben Gravitationsbeschleunigung unterliegen, fallt dieser Term in
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Fig. 3.4: Das Abfangproblem von einem ,Geschoss“ durch ein anderes ,,Ge-
schoss“ und das dazugehorige Kollisionsdreieck. Der Winkel oo = arctan/H/W]
ist hier der zeitlich leicht verinderliche Neigungswinkel der Verbindungslinie
beider Flugkorper zur Horizontalen. Das linke Target-Geschoss bewegt sich
mit 300 m/s, das rechte Abfanggeschoss mit 600 m/s. Zu jedem Zeitpunkt
muss die Beziehung vp sin[0p —a] = vp sin[0r + o] des Geschwindigkeitsdrei-
eckes (Sinussatz) erfillt sein. Die zeitlichen Abstinde der roten Markierungen
entsprechen genau einer Sekunde. Demmnach findet bei etwa t = 5.07 s die
Kollision statt.

der zweiten Gleichungen heraus. Wir haben so trotz Gravitation die
reduzierten Bedingungen
vr cosldr]t. = W —wp coslfp]t,,
H + vr sin[fr]t. = wvp sin[fp]te..
Eliminieren wir hier den Kollisionszeitpunkt , so erhalten wir zunachst

die Relation
vp (H cos|@p] — W sin[fp]) + vr (H cos[fr] + W sin[dr]) = 0.

Durch eine trigonometrische Umformung folgt daraus die bemerkenswerte
Relation

vp sin[fp — a] = vr sin[fr + a. (3.26)

Der Winkel « ist dabei der Neigungswinkel der Verbindungslinie zwischen
den beiden Geschossen und der Horizontalen und berechnet sich zu

tanfa] = % (3.27)



Die Gleichung (3.26) ist Grundlage der sogenannten Proportional-Navi-
gation, bei welcher sich das Projektil mit einer nahezu zeitlich konstanten
Peilung 0, — o dem Zielobjekt n&hert. Fiir einen Treffer muss dabei zu
jedem Zeitpunkt die Gleichung (3.26) erfiillt sein - zumindest wenn sich
beide in einer Wurfparabel bewegen.

MRSI-Verfahren: Dasselbe Ziel in beliebiger Hohenlage zum Abschussort
wird gleichzeitig von zwei Kugeln getroffen, die mit den Geschwindigkeiten
v1 und vy und den Abgangswinkeln ©1 und ©2 abgeschossen wurden. Wie
grof$ ist der Unterschied in den Flugzeiten?

Diese Aufgabe kniipft an das moderne MIRSI - Verfahren (Multiple
Rounds Simultaneous Impact) an, bei dem mit modularen Treibladungen
mehrere ,,Kanonenkugeln“ zu unterschiedlichen Zeiten und Elevationen
abgeschossen werden, aber gleichzeitig am entlegenen Ziel angelangen. Das
Verfahren eignet sich aber wohl nur fiir Einzelgeschiitze und funktioniert
natiirlich nur unterhalb der maximalen Schussreichweite.

Nehmen wir an, dass zum Zeitpunkt ¢t = 0 die Kugel mit der Marke
1 abgeschossen wurde, zu einem etwas spéteren Zeitpunkt ¢ = 67 die
Kugel mit der Marke 2. Dann miissen die folgenden zwei notwendigen
dynamischen Bedingungen fir die Flugzeit T der Kugel ,,1“ und der
Zeitverzogerung AT fiur Kugel ,,2¢

vy cos[01] T = vy cos[Oz] (T — AT) (3.28)
sowie
1 1
vy sin[O©4] T — 3 gT? = vy sin[0s] (T — AT) — 39 (T — AT)? (3.29)

erfiillt sein. Zu diesen zeitlichen Bedingungen tritt noch die geometri-
sche Forderung, dass beide Wurfparabeln die Koordinaten des Zielortes
enthalten miissen. Dies schrénkt die moglichen Werte von v; 2 und 0 5 er-
heblich ein. Aus den obigen Gleichungen lassen sich die zwei Unbekannten
t und T berechnen. Man erhalt fir die Flugzeit von Kugel 1

201 v3 cos[O2] sin[O; — O]

= g (v3 cos[O2]2 — v? cos[O1]?) (3.30)

und die Zeitverzogerung fiir die Kugel 2

201 vg sin[@1 — O]
g (v1 cos[O1] + vy cos[O2]) "

AT = (3.31)




Genau dies ist auch das Ergebnis von C. CRANZ in ([10]).

Aufgabe von C. Cranz: FEin Morser wird auf die Spitze eines Burg-
turmes gerichtet, der Schuss trifft den Turm an seinem FufSpunkt in
der Horizontalebene durch das Geschiitz nach t1 Sekunden. Ein zweiter
Schuss mit anderer Ladung (Anfangsgeschwindigkeit) und doppelter Ele-
vation trifft die Spitze des Burgturmes nach ty Sekunden. Wie hoch ist
der Burgturm und wie weit ist er entfernt?

Die Unbekannten des Problems sind also die Héhe H des Turmes,
seine Entfernung W zum Geschiitz, auflerdem die beiden Abgangsge-
schwindigkeiten v; und ve. Eine weitere von den obigen Gréflen abhingig
Unbekannte ist die erste Elevation ©, die aber wegen tan[©] = H/W mit
der Hohe und Entfernung des Turmes verkniipft ist. Somit ergeben sich
folgende Bedingungen

v1 cos[O] {1 w,

v cos(20)ty = W,

vy sin[© ]tl—,gt1/2 = 0,

vy Sin(20) ty — gt3/2 H,
W sin[®] = H cos[O)].

Wir haben so fiinf Gleichungen fiir fiinf Unbekannte. Die einzige physika-
lisch sinnvolle Losung lautet

gtits 1 3+ 42
V= ————, =g 2 1 3.32
CveGg-a) 2N E-g 532
sowie
1 1 2+ 12
H=sg8, W=_gt iy (3.33)
2 t2 —t2

Damit ist auch diese Aufgabe vollstdndig erledigt. Der erste Elevations-
winkel ergibt sich natiirlich aus der Relation

2 —t2

t3 413

tan[®] =

Wie allerdings C. CRANZ auf diese Aufgabe gekommen ist, bleibt im
Dunkeln.



4 Die klassische Ballistik mit
Luftwiderstand

Seit I. NEWTON wissen wir, dass der Luftwiderstand bei héheren Ge-
schwindigkeiten bis knapp unterhalb der Schallgeschwindigkeit in guter
Néherung proportional dem Quadrat der Geschwindigkeit sein muss. In
der hydrodynamischen Theorie spielt hier die Reynoldszahl der Stromung
um die Korperoberflache (Grenzschicht) eine wichtige Rolle. Auf das
quadratische Gesetz werden wir uns im Folgenden auch beschranken.

4.1 Integration der Grundgleichungen

Die idealisierten Bewegungsgleichungen eines Projektils mit Eigenbe-
schleunigung a und einem reinen Luftwiderstandsgesetz der Form k v?
lauten dann

i = (a—kv?) %, (4.1)
T (a—k’vz)%—g, (4.2)

wo k = kp ein Luftwiderstandsbeiwert (drag force) der Dimension einer
inversen Linge ist. Fiir die Geschwindigkeit gilt v? = #2+2. Die eventuell
vorhandene Eigenbeschleunigung o (Base Bleed Geschoss; Rakete)
wirkt hier immer lings der momentanen Bahntangente. Zunachst werden
wir diese Eigenbeschleunigung aber Null setzen. Schon hier sieht man, dass
Raketenballistik und klassische Ballistik fliefend ineinander iibergehen.
Reine Raketenballistik werden wir in einem spéateren Kapitel behandeln.
Die Gravitation wird als konstant und die Erde als eben angesehen.
Multipliziert man die erste Gleichung mit &, die zweite mit ¢ und addiert
beide, so gilt wegen

d

(%) =200 =2(2F +§) (4.3)



die erste Grundgleichung
v+ kvd+gy=0. (4.4)
Berticksichtigen wir nun die elementaren Beziehungen
i=vcoslf); y=wvsin[d], &j-gi=020 (4.5)

so ldsst sich (4.4) auch schreiben als

O+ kv? + g sin[f] = 0. (4.6)

Aus dieser Gleichung folgt fiir die ballistische Kurve die Existenz eines
Punktes M minimaler Geschwindigkeit. Denn aus 0 = 0 folgt sofort
2
sin[f,] = LS (4.7
g

Da die Grofle sin[f,,] immer negativ ist, muss der Punkt M bei antriebs-
losem Flug stets hinter dem Gipfelpunkt ( Vertex) auf dem absteigenden
Ast der ballistischen Kurve liegen. Nur bei der Parabel und beim Senk-
rechtsschuss sind Gipfelpunkt und M identisch.

Wird andererseits die erste Gleichung von (4.1) mit g, die zweite mit
4 multipliziert und dann die zweite von der ersten subtrahiert, so gilt
zunéchst

-yt =gz (4.8)
und wegen (4.5) schliefilich
df
v + g cos[d] = 0. (4.9)

Die beiden Gleichungen (4.6) und (4.9) sind die beiden Fundamental-
gleichungen der ballistischen Kurve, nun aber in den Gréflen v, der
Bahngeschwindigkeit, und dem Tangentenwinkel 6 der Bahnkurve. Bei-
de Gleichungen lassen sich auch dynamisch einfach interpretieren. Die
Gleichung (4.6) beschreibt die Kréftebilanz in tangentialer Richtung an
der Bahnkurve, die Gleichung (4.9) normal zur Kurve. Das letztere sicht
man ein, wenn man die Bogenlédnge s der Bahnkurve

ds = vdt (4.10)



einfithrt. Dann kann man (4.9) auch schreiben als

v? % + g cos[f] = 0. (4.11)
Die GroBe ds/df stellt aber bis auf das Vorzeichen den Kriimmungsradi-
us der Bahnkurve dar, so dass die Gleichung (4.11) das Gleichgewicht
zwischen Zentrifugalbeschleunigung und der Normalkomponente der Erd-
beschleunigung dargestellt. Auf dhnliche Weise kann man auch bei der
Bewegung einer Testmasse um einen Zentralkérper nach dem Newton-
schen Gravitationsgesetz zeigen, warum dieser Korper ,schwerelos® ist.
Fiir eine Kreisbahn ist dies natiirlich trivial.
Die Bogenlange spielt bei der Theorie der ballistischen Kurve eine
wichtige Rolle, denn wegen (4.10) kann man (4.5) auch als

dx = coslf]ds
dy = sin|[f]ds (4.12)

schreiben. Wére hier die Bogenlédnge s als Funktion des Winkels 6 bekannt,
so ergeben die obigen Gleichungen nach einer Quadratur die ballistische
Kurve. Diese Idee ist tatséchlich durchfithrbar.
Die erste Bewegungsgleichung (4.1) lasst sich wegen (4.5) umschreiben
in
d
a{v cos[0]} + kv {v cos[d]} = 0. (4.13)

oder mit ds = v dt
di{v cos[d]} + k {v cos[d]} = 0. (4.14)
s

Aus dieser Gleichung folgt der wichtige Satz, dass in einer ballistischen
Kurve mit quadratischem Widerstandsgesetz die horizontale Geschwin-
digkeitskomponente exponentiell mit der Bogenldnge der Bahn abnimmt.
Dies gilt aber nur bei einem quadratischen Widerstandsgesetz. Hat am
Scheitelpunkt der Bahn die Kanonenkugel die horizontale Geschwindigkeit
Tg, so gilt bei einem quadratischen Luftwiderstand

E=dge s, (4.15)

wobei die Bogenldnge der Bahn vor dem Scheitelpunkt negativ, nach dem
Scheitelpunkt positiv gezahlt wird.



Mit der Abkiirzung
u = v cos[f] (4.16)

lautet die obige Relation am Abschussort
u[s] = vg cos[@] e, (4.17)

wo O jetzt den Elevationswinkel am Abschussort s = 0 und vy die
Abschussgeschwindigkeit bedeuten.

Wir wollen jetzt eine einzige Differentialgleichung fiir v[f] ableiten.
Dazu schreiben (4.6) nach der Kettenregel

dvdd o,
@ a + kv + q sm[@] =0. (418)

Eliminieren wir hier die Grofle df/dt mit Hilfe von (4.9), so erhalten wir
die fundamentale Gleichung

dv kv®

i m —gv tan[f] = 0. (4.19)

g

Dieser Typ von Differentialgleichung ist charakteristisch fiir ein ballisti-
sches Problem. Es erweist sich hier als giinstig, wieder die Geschwindigkeit
u iiber Grund einzufithren. Mit v = u/cos[f] fithrt dies schliefflich zu der
Bernoullischen Differentialgleichung"

g cos[d]? Z—Z = kub. (4.20)

Wir fithren nun die Steigung p der Bahnkurve geméaf

p = tan[f]; cos[d] = . do = dp (4.21)

VI+p? 1+ p?
ein. Damit lautet die Gleichung fiir u

d
gd—z =k\/1+p2ub. (4.22)

1Benannt nach JACOB BERNOULLI, der sie 1695 diskutiert hat. Normalform y’ +
plz]y = qlz]y™.




oder nach Division durch u?

d (1
(UQ) +2k/1+p2=0. (4.23)

Y dp

Diese Differentialgleichung erster Ordnung ist integrabel und liefert u =
v cos[©] als Funktion des Parameters p. Man erhilt dann durch direkte
Integration

52/[];] +p+/1+ p? + arcsinh[p| = C. (4.24)

Die Integrationskonstante C' wird durch die Anfangsbedingung bestimmt.
Die transzendente Gleichung (4.24) stellt so den Hodographen der
einfachen ballistischen Kurve bei quadratischem Luftwiderstand dar?.
Denn es gilt wegen p = ¢/& auch

. .\ 2 .
g,/f + E 1+ <y> + arcsinh <y) =C. (4.25)
T z z z

Am Scheitelpunkt der ballistischen Kurve ist die vertikale Geschwindig-
keitskomponente g = 0. Bezeichnet man dann die dortige Horizontalge-
schwindigkeit mit &g, so gilt fiir den Hodographen

Diese exakte Formel fiir den Hodographen der Wurfbewegung benutzte
J.H. LAMBERT 1767 zur Konstruktion einer echelle ballistique, eine
Art ,Nomogramm* &hnlich einem ,Rechenschieber* zur Berechnung
ballistischer Kurven ([30]). Ist die Funktion u[p] einmal bekannt, kann

Re|.

?Dieses wichtige Integral des ballistischen Problems war schon J. BERNOULLI 1719
bekannt, wurde dann 1745 von L. EULER und 1766 von J.H. LAMBERT neu
abgeleitet. 2012 hat im Wettbewerb , Jugend forscht“ der Abiturient SHOURYYA
RAY diese Gleichung neu gefunden, was in der Weltpresse als etwas tibertriebene
Sensation darstellt wurde.
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Fig. 4.1: Der Hodograph (4.26) der ballistischen Wurfbewegung mit quadrati-
schem Widerstandsgesetz als Funktion verschiedener Werte der Scheitelpunkt-
geschwindigkeit vz bei vy = 0. Alle Geschwindigkeiten sind in Einheiten von
v g/k. Alle Kurven enden bei der skalierten konstanten Fallgeschwindigkeit
—1.

die ballistische Kurve in parametrischer Form berechnet werden. Mit
Hilfe von (4.9) folgt das Zeitdifferential

1 udf 1
- __Z . 4.2
dt g cos? [9] g U[p] dp (4.27)
und daraus die Bahnkurve

1 1
do=——w’lpldp;  dy=—pu’lpldp. (4.28)

Mit der Definition

flp] = p V14 p? +1Inp+ 1+ p? (4.29)



gilt dann im Einzelnen

dr = _vj ko2 cos[Of dp (4.30)
g9 1+ = cos[0]? {f[tan[O]] — f[p]}
und 2 [@]2 d
du— Y0 __COSIP) pap 4.31
Y 9 1+ k% cos[O]2 {f[tan[O]] — f[p]} .
sowie

o cos[O] dp _
9 \/1 + ij)S cos[©]? {f[tan[O]] — f[p]}

Der Winkel © bezeichnet jetzt den Abgangswinkel der Kanonenkugel
beim Abschuss. Aus der letzteren Gleichung folgt durch Differentiation
nach der Zeit eine sehr einfache Differentialgleichung fiir p[t], auf die
wir noch zuriickkommen werden. Auch die Gesamtgeschwindigkeit kann
wegen

(4.32)

v? = u? (14 p?) (4.33)

durch
o8 cos[O]% (1 + p?)

1+ 228 cos[O]? {ftan[0]] — £[p]}

ol = (4.34)

ausgedriickt werden. Mit dieser Gleichung ist es zum Beispiel moglich,
den Punkt minimaler Geschwindigkeit ldngs der ballistischen Kurve zu
berechnen.

Damit lésst sich die ballistische Kurve parametrisch durch Quadraturen
darstellen. Im Prinzip ist dies auch die Losung, die J. BERNOULLI 1719 als
Erster fand. Vom praktischen Nutzen sind diese Differentiale eigentlich nur
fiir die Berechnung der beiden Asymptoten der Kurve. Fiir den Abstand
Wy der senkrechten Asymptoten vom Abschussort gilt das Integral

W — vg r i cos[0]? dz (435)
" ta{[@] + £28 cos[O)2 [f[tan[O]] + f[2]]

Im Anhang (A.3) diskutieren wir dieses mathematisch sehr interessante
Integral etwas genauer in der komplexen Ebene. Eine Vereinfachung durch



die Residuenmethode ist aber leider nicht méglich. Die andere Asymptote
ist die riickwarts fortgesetzte Gerade, die eine etwas hohere Elevation als
© am Abschussort hat.

Die Differentialgleichung (4.23) gilt fiir den Fall n = 2. Im allgemeineren
Bernoulli - Fall von 1719 gilt stattdessen (a = 0)

g Z—z cos[f]" ! — cu™t = 0. (4.36)

und in der Variablen p

g% (1) +nc (myhl = 0. (4.37)

u”[p]

Hier sieht man sofort, dass der Fall n = 1 trivial ist. Fir den Eulerschen
Fall n = 2 ergibt sich wieder (4.23). Die Félle n = 3 und n = 4 wurden
von dem Mathematiker C.G. Jacobi 1840 auf elliptische Integrale zuriick-
gefiihrt. Der franzosische Mathematiker J.J. DRACH (1871-1949), der
wahrend des ersten Weltkrieges sich theoretisch mit Ballistik beschéftigte,
veroffentlichte 1920 eine Untersuchung, in der alle exakt integrierba-
ren Fille eines vorgegebenes Luftwiderstandsgesetzes aufgelistet werden
konnten ([19]).

Das Problem der ballistischen Kurve ist ein Musterbeispiel dafiir, wie
dynamische und geometrische Begriffsbildungen ineinander verwoben sind.
Wir wollen jetzt eine einzige Differentialgleichung nur fiir den Verlauf y|x]
der ballistischen Kurve mit quadratischem Widerstandsgesetz herleiten.
Nach den vorherigen Uberlegungen gilt zunéchst

db
u? 7 + g cos[f]® = 0. (4.38)

Andererseits kénnen wir (4.20) umschreiben in

g cos[d]? gy ) (4.39)

oder d /1
g cos[d]® — (uz> +2k=0. (4.40)



Quete: Deutsche Folothek

Fig. 4.2: FEine Illustration aus dem Buch ARCHITECTUR von Walther
Hermenius Ryff, Nirnberg 1547. Insbesondere hier iber die ,mathematischen*
und ,mechanischen® Kiinste. Hier erkennt man noch die alte dreiteilige ,, Im-
petushypothese“ aus Gerade — Kreis — Gerade. (Quelle: wikimedia commons)

Wegen (4.38) kénnen wir dies auch

df d 1
2 _—— _— =
wt o <u2> 2k (4.41)
d 1 1

ds (J) =2k (;) (442)

schreiben. Nun gilt in der Kurvengeometrie fiir den Tangentenwinkel 6
und fiir die Kurvenkriitmmung

oder

1 do "
= Y (443)

Vity? s (L4 y?)pr

Dabei gilt ds = y/1 + y2dx. Setzt man diese Formel in (4.38) ein, so

tan[f] = y'; cos[d] =



folgt nach Streichung des gemeinsamen Faktors /1 + 32 die Differenti-
algleichung der Bahnkurve

- =¥ (4.44)

Im Falle u[z] = Z[t] = konstant folgt hieraus die Galileische Wurfparabel
als allgemeine Losung. Der zeitliche Verlauf in der Bahnkurve ergibt sich
aus dem Differential

1
Y S (4.45)
g
Die eigentliche Differentialgleichung der Bahnkurve folgt schliefilich durch
Einsetzen von (4.44) in (4.42). Es gilt wegen ds = /1 + y'2dx eine
Differentialgleichung dritter Ordnung?®

y" =2k /1 +y2 ", (4.46)

die mit den Anfangsbedingungen

y[0] = 0; y/[0] = tan[@]; y”[0] = =% secO]  (4.47)

gelost werden muss. Auffallend ist hier, dass die Gravitationsbeschleuni-
gung ¢ gar nicht in die eigentliche Differentialgleichung der ballistischen
Kurve eingeht, sondern nur durch eine Randbedingung beriicksichtigt
wird. Schon das erste Integral der obigen Differentialgleichung ist nicht
mehr algebraisch, sondern von transzendenter Form und zeigt die gan-
zen mathematische Schwierigkeiten des ballistischen Problems— z.B. im
Vergleich zum Keplerproblem der Planetenbahnbewegung.
Der wichtige ballistische Koeffizient k hat die Dimension einer inversen
Linge und zugleich die physikalische Deutung (n = 2)
1 Aorust
k= 5 Cw(M) e (4.48)
wo A die Querschnittfliche, gr,f: die Dichte der Luft, m die Masse
des Projektils und ¢, ein Widerstandsbeiwert bedeutet, der von der

3In den Papieren von L. EULER (1745) erscheint sie so noch nicht, dann aber bei
J.H. LAMBERT (1766), spater auch bei I. DIDION (1848).
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Fig. 4.3: Der Luftwiderstandsbeiwert c., (M) als Funktion der Geschwindig-
keit nach C.J. CRANZ 1910 ([16]). Bis zur Schallgeschwindigkeit (= 340m/s)
(subsonic) ist der Wert konstant, im folgenden Ubergangsbereich (transonic)
stark ansteigend und im Uberschallbereich (supersonic) fillt der Wider-
standsbeiwert in etwa mit dem Potenzgesetz v—1/2 ab. Das quadratische
Widerstandsgesetz gilt somit streng nur im subsonischen Bereich - genauer
fiir Reynoldszahlen von 10° bis etwas diber 10°. Im supersonischen Bereich
gilt eher k(v) ~ v3/2. Eine Patronenkugel mit 760m /s Anfangsgeschwindig-
keit hdlt sich nur etwa lsec im Uberschallbereich auf.

Form des Projektils und auch noch von der Geschwindigkeit (Machzahl)
abhéngen kann. Hier ist es wichtig, ob die Geschwindigkeit unterhalb oder
oberhalb der Schallgeschwindigkeit liegt. Heutzutage weifl man, dafl die
Abbremsung durch drei Faktoren bestimmt wird: Im Uberschallbereich
durch den ,,Stofiwellenwiderstand“, dann durch die eigentliche Luftreibung
und schliefllich durch den ,,Bodensog” am hinteren Ende des Geschosses,
wo durch den Unterdruck Luftwirbel entstehen.

Eine ballistische Kurve besitzt im Allgemeinen zwei bemerkenswerte
Extremalpunkte auf ihrer Bahn. Der erste Punkt, der zeitlich kurz nach
dem Gipfelpunkt (Vertexpunkt) erreicht wird, ist der Punkt mazimaler
Krimmung. Kurz danach folgt der Punkt minimaler Geschwindigkeit.
Nur bei der reibungsfreien Parabelbahn oder beim Senkrechtschufl mit
Luftwiderstand fallen beide Punkte im Vertexpunkt zusammen. Der
Punkt 2, minimaler Geschwindigkeit folgt sofort aus der Gleichung (4.7)
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Fig. 4.4: Durch eine numerische Integration errechnete ballistische Kurven
mit den Bahnpunkten mazimaler Krimmung (rot) und minimaler Geschwin-
digkeit (blau). Der Parameter = g/(kv2) betrigt hier 1/6 und die Elevati-
onswinkel gehen in 10er Schritten von 5 bis 55 Grad.

in transformierter Form zu

3
Y[y [z] = k ( 1+ y’[xv]Q) (4.49)
Ganz analog gilt auch eine Bestimmungsgleichung fiir den Punkt =g

mazimaler Krimmung. Fiir ihn folgt nach Definition fiir die Kriimmung
einer Kurve durch Extremwertbildung

Vel lax) = 2k (VIT7ToE) (4.50)

Durch numerische Integration der ballistischen Differentialgleichung (4.46)
lassen sich diese Punkte einfach bestimmen (siche Fig. (4.4)).



4.2 Reihenlosungen nach Euler

Schon im Jahre 1745 hat L. EULER versucht, die ballistische Kurve durch
ein Polynom darzustellen. Wir kénnen seine Losung schnell mit Hilfe der
Schlisselgleichung (4.46) verifizieren. Wir machen einen Reihenansatz
der Form -
y[z] = tan[O@] x — % sec[0]? 2% — Z e,k (4.51)
20§ —
und bestimmen rekursiv die Koeffizienten ¢j. Die so entstehende unendli-
che Reihe diirfte aber divergent sein, wofiir aber ein strenger Beweis fehlt.
Von diesen Schwierigkeiten zundchst abgesehen ergibt sich so fiir die bal-
listische Kurve bis zu Termen fiinfter Ordnung in x die semikonvergente
Reihendarstellung

ylz] =tan[O) x — % sec[@)% 2% — :5792 sec[0) 2*
0 0
- kg4 {2kv§ — g sin[O]} sec[0]* z* (4.52)
1205
B 6]8 96 {4k*v5 — 8k gv] sin[O] + g* cos[O]*} sec[O]® 27—
Yo

Die hoheren Potenzterme in z wachsen in ihrer Lange sehr schnell an.
Die ersten beide Terme beschreiben aber die typische ,, Wurfparabel“ nach
Galileo Galilei - Torricelli, der nichste kubische Term dagegen eine reine
Abbremsung und Verkiirzung der Bahn im Abstiegsbereich durch die
anfiingliche Bremsbeschleunigung k v3. Der Term vierter Ordnung in
kann aber - je nach den Parametern - sein Vorzeichen wechseln, so dass
hier schon eine divergente Reihenentwicklung angedeutet wird.

Eine Regularisierung der Reihe ist wohl analytisch ausgeschlossen. Aber
man kann versuchen, fiir die divergente Entwicklung eine Art Borel’scher
Summation® der ersten dominanten Terme der semikonvergenten Reihe
vorzunehmen (Borel- Transformation). Zu diesem Zweck betrachten wir

4E. BOREL, (1871-1956).



vereinfacht nur die Partialentwicklung

y[z] =tan[O] z — %}8 sec[0]% 22 — ?i]gg sec[0]® 23

k2 g 4 k3
1502

sec[0]° 2°—

Durch Ausklammern von k 148t sich leicht zeigen, dass diese ins Un-
endliche fortgesetzte Reihe durch den geschlossenen Ausdruck

— _ g 2ksec[®lx _ _
yle] = tanfe] e = 75 (e 2k sec[0] z 1). (4.53)

dargestellt werden kann. Die Naherung stellt sich fiir alle Parameter
k bei relativ kleinen Elevationen © als duflerst genau heraus. Wie zu
erwarten, sind die Schussweiten bei Flachbahnen etwas unterhalb der
exakten Werte.

Mit der obigen analytischen Darstellung kann man auch versuchen,
das alte Problem von Tartaglia, ndmlich die Schussweite als Funktion des
Abschusswinkels © und der Abschussgeschwindigkeit vy unter Einbezie-
hung des Luftwiderstandes zu berechnen. Euler gibt fiir dieses Problem
1745 eine Formel an, die aber in realistischen Fallen kaum anwendbar ist.
Aus der obigen Darstellung der ballistischen Kurve folgt nadmlich durch
Umkehrung fiir die Wurfweite W die asymptotische Reihe

2 2
w=2 <sin[2@] - 4§UO sin[20)] sin[O] + .. ) (4.54)
g g

In normalen Fillen ist aber kv > g; also weit ab vom méglichen Konver-
genzkreis der obigen Entwicklung. Fuler gibt auch eine Formel fiir den
Elevationswinkel ©,,, maximaler Wurfweite bei horizontalem Geldnde an.
Mit Hilfe von Computeralgebra erhélt man den asymptotischen Ausdruck

1 1 kv
sin[0,] = —= — = —2 + O(k?), 4.55
Ol = 75— 5 ot +OG) (455)
der mit dem von EULER von 1745 iibereinstimmt. Allerdings verdndert
sich der Koeflizient proportional k leicht, wenn man den Polynomgrad
der Approximation bei der ballistischen Kurve erhéht. Wir werden im
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Fig. 4.5: Die erste ausfihrliche analytische Darstellung einer ballistischen
Kurve durch Leonard Euler in seinem Werk ,Grundsdtze der Artillerie“
von 1745, indem er die experimentellen Resultate von Benjamin Robin aus
England in einer physikalischen Theorie mathematisiert. Das Hauptproblem
der Lésbarkeit durch Quadraturen wurde schon von J. Bernoulli 1719 in einer
Kontroverse mit Newton rein formal gezeigt.



néchsten Kapitel durch numerische Integrationen und eine genauere ana-
lytische Untersuchung zeigen, dafl in der obigen Reihe (4.55) anstatt des
Faktors 1/6 ~ 0.1666 eher 0.0742. .. stehen muss. Ursache hierfiir ist die
merkwiirdige Tatsache, daf} fiir den fraglichen numerischen Koeffizienten
der Reihenentwicklung nach k eine Taylor - Entwicklung der ballistischen
Kurve nicht ausreichend ist.

Euler schlieit seine Untersuchungen 1745 mit der Bemerkung:

Deswegen sind wir gezwungen, diese Untersuchung allhier
abzubrechen, und wollen wir dem Autori® die véllige Ausfiih-
rung dieser Materie iberlassen, als welche er uns in einer
besondern Schrift ndichstens zu liefern versprochen hat.

Doch L. EULER wartete vergebens...

4.3 Reihenentwicklung nach Tempelhof

Die umfangreichsten Reihendarstellungen der ballistischen Kurve stam-
men wohl von G.F. TEMPELHOF®, die er 1781 in seinem Buch (siche Fig.
4.6) darlegte. Er berticksichtigte in seinen Betrachtungen auch schon eine
variable Luftdichte mit der Hohe. Die Gleichung (4.9) kann mit (4.17) in
die Form

df g cos[d)® .
. i e s 4.56
ds v cos[O]? ¢ (4.56)
gebracht werden. Dies ist die Hauptgleichung von G.F. TEMPELHOF
aus dem Jahre 1781, um entweder exakt die Bogenldnge s der Bahn als
Funktion des Tangentenwinkels 6 oder umgekehrt gendhert den Winkel als
Funktion der Bogenldnge in einer Reihe darzustellen ([60]). Der zeitliche
Verlauf ist dann durch (4.17) oder

ds cos[O®] _ .

o = o cos[f] e " (4.57)

5gemeint ist B. ROBINS, London 1742

6Georg Friedrich Tempelhof (auch Tempelhoff); (1737-1807). 1791 Griinder der
Artillerie Akademie im Palais Tempelhoff in Berlin; 1802 Generalleutnant; 1805
Schwarzer Adler-Orden.



gegeben. Grundlage fiir TEMPELHOF ist nun diese Differentialgleichung
(4.56), die als Losung den Hodographen der ballistischen Kurve als Funk-
tion der Bogenldnge hat. Mit der dimensionslosen Bogenlinge

1
S = 7S (4.58)
und dem meist kleinen Parameter (1 < 1)
g
=2 4.59

lautet diese Gleichung dann

do cos[0]3 25

- _ _ 4.
as a cos[0]? (4.60)
Wir losen sie mit dem Ansatz
=0+ cop" (25 -1)" (4.61)
n=1

Nach Bekanntwerden der ¢,, ist der Tangentenwinkel der Bahn als Funk-
tion der Bogenldnge bekannt. Mit Hilfe dieser Reihe und (4.12) gelingt
es dann, den komplexen Zeiger exp(z6(S)) parametrisch als Funktion der
Bogenliange darzustellen. Auf diese Weise folgt

et008) — O _ iw (625 _ 1) (6219 4 1) — (4.62)

1
E“Q (625 _ 1)2 (26319 4 et — e—z@) +o
und nach Integration iiber die Bogenlédnge fir die komplexe Bahnkoordi-
naten ¢[S] = &[S] + 1 n[Y]

¢[S] =8Se® — %z,u (e —1-28) (*® +1)

1
— 674M2 (645—4628+4S+3) (263”9—1—@’@—6_’@) +...
Diese Reihen sind aber sehr langsam konvergent und man bendtigt
mindestens Terme bis zur vierten Ordnung in g, um fiir moderate Eleva-
tionswinkel © die Genauigkeit der recht kurzen Lambertschen Funktions-
darstellung (4.125) zu erreichen. G. TEMPELHOF selber berechnete die

(4.63)
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Fig. 4.6: Das Einbandbild des Buches Le Bombardier Prussien von G.F.
Tempelhof (Tempelhoff) aus dem Jahre 1781. Dieses Buch, in welchem man
die umfangreichsten Reihenentwicklungen zur ballistischen Wurfbewegung vor-
findet, stellt einen Hohepunkt und Abschluss in der theoretischen ballistischen
Forschung des 18. Jahrhunderts dar.



Terme mit den reellen trigonometrischen Funktionen bis zur siebenten
Ordnung in u, was ich mit Computeralgebra nachgerechnet habe und
dabei keinen Unterschied feststellen konnte. Bis zur dritten Ordnung
ergeben sich ndmlich aus (4.62) die beiden Entwicklungen

cos[l] = cos[O] — %u (62S — 1) sin[2 6]

—é,uz (e* — 1)2 cos[3 O]

+%M3 (25 — 1)3 (sin[2©] — 7 sin[4 O)])

und

sin[f)] = sin[O] — %,u (e*® — 1) (1 + cos[20])

——u? (e* - 1)2 (sin[®] + sin[3 O))

—— (€2S - 1)3 (3 —4cos[20] — 7 cos[409])

Es bleibt aus heutiger Sicht eigentlich ratselhaft, warum das Buch von
G.F. TEMPELHOF(F) damals als so fundamental angesehen wurde, da die
analytischen Reihenentwicklungen kaum Nutzen fiir die damalige prakti-
sche Artillerie hatten. Obwohl zunéchst geheimgehalten, berichtete schon
1797 der Astronom und Hauptmann der preufiischen Armee JOHANN
PuiLipp vON ROHDE iiber die Untersuchungen von Tempelhoff in seiner
eigenen Schrift tiber das ballistische Problem ([16]).

4.4 Reihenlosungen nach der Zeit

Die klassische Losung hat den Nachteil, dass sie nur eine implizite Dar-
stellung der Bahnkurve in ihrem zeitlichen Verlauf darstellt. Es ist daher
wichtig, nach einer alternativen Darstellung des zeitlichen Verlaufs der
ballistischen Kurve zu suchen. Erste Versuche in dieser Richtung hat
schon G. TEMPELHOF in seinem Werk unternommen, neuere Untersu-
chungen stammen von G.W. PARKER ([12] und auch R. SHOURYYA



([50]). Die Grundgleichungen des Problem sind wieder

FrkViE2+2s = 0, (4.64)
J+EVI2+ P2 9+g = 0, (4.65)

die mit den Anfangsbedingungen
Z[0] = vg cos[O]; 9[0] = vo sin[O]. (4.66)

durch eine mdglichst einfache Reihenentwicklung oder Zeitfunktionen ¢
gelost werden miissen. Aufgrund der Struktur der Gleichungen als ein Sys-
tem von Differentialgleichungen erster Ordnung mit einem integrierenden
Faktor machen wir den Ansatz

{£, 9} = vo cos[O] {; S} (4.67)

Durch Einsetzen in die Bewegungsgleichungen erhélt man nach Umfor-
mungen die neuen bemerkenswerten Gleichungen

9

v cos[O)] a (4.68)

b=
G = +kvg cos[O] /1 + p2. (4.69)

Dieses bemerkenswerte gekoppelte System muss fiir eine ballistische Kurve
mit den Anfangsbedingungen

q[0] =1, p[0] = tan[O] (4.70)

gelost werden. Aus beiden gekoppelten Gleichungen folgt leicht

P+kgy/1+p2=0. (4.71)

Diese Schliisselgleichung folgt auch aus dem Zeitdifferential (4.32) und
ist ihr direktes Aquivalent. Sie bestimmt den zeitlichen Verlauf der Bahn-
tangentenneigung am Flugkoérper und muss mit den Anfangsbedingungen

9

pl0] =tan[®];  p[0] = v cos[@]

(4.72)



gelost werden. Das Vorzeichen der Wurzel in (4.71) ist von der Orien-
tierung des Geschwindigkeitsvektors abhingig. Der Winkel zwischen der
Zenitrichtung und der Geschwindigkeitsrichtung nimmt zeitlich
immer zu.

Mit Standardmethoden erhélt man so leicht die Taylorreihen bis zur
dritter Ordnung in ¢

g sec[O] t?  kg® tan[O] 3

t—k;gsec[@]i—l- E+ (4.73)

p[t] = tan[O] - ~

und

2 k ‘(,_.)2_k 2 o ® 3
qit)] =1+ kvot — kg sin[@]%Jr g (g cos| ]U vg sin[O)]) %7
0

(4.74)

Mathematisch sind diese Reihen sehr interessant, aber fiir realistische
Félle nur langsam konvergent. Fiir die praktische Berechnung von ballisti-
schen Kurven bieten sie so gegeniiber der numerischen Integration keine
wirklichen Vorteile, zumal ja die Positionen des Korpers noch einmal
durch eine Quadratur gewonnen werden muss.

Die wichtigste Ndaherung, die sich aus den obigen Formeln ergeben,
nennen wir die sogenannte Lambertsche Approximation, da schon J. LAM-
BERT auf diese im 18ten Jahrhundert gestofien ist. Sie ist fiir Flachbahnen
der beste Kompromiss zwischen Genauigkeit und analytischem Aufwand.
Mit Hilfe der p[t] und ¢[t] Funktionen erhilt man diese Approximation
mit Index 1 durch die lineare und quadratische Nédherung in der Form

) v cos[O]
] = 222
[t 1+ kvot’
) vo sin[O] — gt — 1 k guvg t2
t| = . 4.
il i (1.75)
Durch Integration ergibt sich dann
1
x[t] = % cos[O] In(1 + kvg t), (4.76)
L/ 9
nlt] = z sin[@] + kR In(1+kvot) —
g (1 +kvt)® —1). (4.77)

S 4k20?



Fiir Flachbahnen mit Elevationen kleiner etwa 25 Grad sind diese Formeln
fiir einen beliebigen ballistischen Koeffizienten k vollig ausreichend. Aus
der ersten Gleichung fur x[t] konnen wir zudem die Zeit ¢ eliminieren
und in die zweite Einsetzen. Dann erhalten wir die rein algebraische
Kurvengleichung

_ _ g 2ksec[O]x _ _
y1[z] = tan[O] z YT (e 2k sec[O] x 1). (4.78)

Diese bemerkenswerte Gleichung ist fiir flache Flugbahnen eine sehr gute
Néherung und entspricht unserer Approximation bei der Summation von
einem analytischen Teil der Eulerschen Reihe (4.53). Die Wurfweite ist
in allen Fallen wenige Prozent zu kurz.

4.5 Alternative Approximationen

Die Losung (4.78) fiir ballistische Flachbahnen wurde in dhnlicher Form
schon von J.H. LAMBERT 1765, spater von DIDION 1860 und schliefllich
von CRANZ in seinem Kompendium 1896 angegeben. Wie man leicht
feststellen kann, erfiillen die Geschwindigkeitsfunktionen (4.75) die halb
entkoppelten Differentialgleichungen (&1 > 0)

¥ = —ksec[@] 3
z.h = —k sec[@] a1 @1 —4g.

Diese Bewegungsgleichungen folgen aus den exakten Gleichungen, indem
man bei den hiufig vorkommenden Flachbahnen den Term 72 im Wur-
zelausdruck fir die Gesamtgeschwindigkeit vernachlassigt, dafiir aber
einen modifizierten effektiven ballistischen Koeffizienten kepr — k sec[O]
einfiihrt, der den Luftwiderstand zu Beginn exakt und am Ende der
Bewegung gendhert beschreibt, aber um den Gipfelpunkt der Bahn leicht
iiberschatzt. Die Flugbahnen sollten also alle etwas zu kurz ausfallen. Es
ist nun interessant, diese sehr gute approximative Losung einerseits mit
der exakten numerischen Losung der Bahnkurve, andererseits aber auch
mit den naiven Losungen der alternativen Bewegungsgleichungen

Ty = —kil

Yo = —kZa202—9.



zu vergleichen. Diese ergeben sich direkt ohne Korrekturterm durch
Vernachlissigung des y> Terms in der Wurzel von v = /42 + 42. Fiir
diese Approximation lauten die Losungen

vg cos[O]
1+ kwvg cos[O] t’
vo sin[O] — gt — 1 k gvg cos[O] t2

el = 1+ kv cos[O] t ’ (4.79)

ioft] =

Durch Integration ergibt sich

xaolt] = % In(1+ kvy cos[O] 1), (4.80)
sec[©]2
yalt] = % <tan[@] + 92]€£}(§]> In(1 + kv cos[O]t) —
—% (14 kwvo cos[@] )2 —1). (4.81)
0

Fiir die ballistische Kurve ergibt sich in dieser Approximation

yolz] = tan[@]z — (exp[2kz] —2kx—1). (4.82)
Durch Vergleich mit einer numerischen Integration der exakten Gleichun-
gen lasst sich die Glite der zwei Approximationen relativ leicht priifen.
Mit den Skalierungen

{kz ky}={&ny: 7= gkt; (4.83)

und dem Parameter
kv
v=—— (4.84)
g

wurden so fiir vier unterschiedliche Elevationen mit v = 25 Simula-
tionen durchgefithrt. Die Abbildungen (4.7,4.8) zeigen die sehr gute
analytische Approximation der ballistischen Kurve durch die Funktion
(z1[t],y1[t]) (rote Punkte). Der Verlauf von (xs[t], y2[t]) (blaue Punkte)
ist deutlich schlechter. Beide Approximationen werden schlechter, wenn
der Elevationswinkeln grofler als 25 Grad ist. Dagegen spielt die Grofle
des Parameters v kaum eine Rolle.
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Fig. 4.7: Vergleich einer numerischen Integration der Differentialgleichung
(4.117) (graue Scheiben) mit den analytischen Formel (4.76, 4.77) (rote
Scheiben) und (4.80, 4.81) (blaue Scheiben) im Falle kv3/g = 25.0 (Starke
Luftreibung). Die Lingeneinheit sind (§,m) = k (x,y). In der oberen Graphik
ist der Elevationswinkel 20, in der unteren 25 Grad. Die Zeitschritte sind
AT =0.1.

Zu Ende des 18. Jahrhunderts war diese relativ einfache asymptotische
Theorie von J.H. LAMBERT fiir die ballistische Kurve so gut wie unbe-
kannt. Einerseits lieBt man in der Enzyklopddie des Christian Freyherrn
von WOLFF (1679 - 1754) sehr kritisches iiber die Wurfparabel: Neue
Ausgabe aus den Anfangsgrinden aller mathematischen Wissenschaften,
Marburg, 1797, Kapitel Anfangsgriinde der Artillerie (redigiert von J.T.
MAYER, Seite 757):

Diese Lehren von der parabolischen Bahn der Geschiitzku-
geln wiirden bey der Anwendung ihre vollkommene Richtigkeit
haben, wenn keine Widerstand der Luft in Betrachtung zu
ziehen wdre. Allein dieser verursacht, daf$ die obigen Leh-
ren in der Austibung sehr grofie Einschrinkung leiden. Nur
in einem luftleeren Raume wiirden die Bahnen der geworfe-
nen Koérper vollstindig parabolisch seyn., aber in der Luft
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Fig. 4.8: Vergleich einer numerischen Integration der Differentialgleichung
(4.117) (graue Scheiben) mit der gendherten analytischen Formel (4.76) ,
(4.77) (rote Scheiben) und (4.80, 4.81) (blaue Scheiben) im Falle kv3/g =
25.0 (Starke Luftreibung). Die Lingeneinheit sind (£,m) = k (z,y). In der
oberen Graphik ist der Elevationswinkel 30, in der unteren 35 Grad. Die
Zeitschritte sind At = 0.1.

selbst weichen sie desto mehr von einer Parabel ab, je grofier
die Geschwindigkeit der geworfenen Kérper, und folglich der
Widerstand der Luft ist. Daher obige Theorie einer grofien
Verbesserung bedarf, wenn sie in der Ausibung zutreffen soll.
Bey dem Werffen der Kanonenkugeln kann sie fast gar nicht
angewendet werden, weil diese namlich gewohnlich eine grofie
Geschwindigkeit haben. Eher ldsst sie sich beym Werffen der
Bomben anwenden, welche gewéhnlich keine sehr groflie Ge-
schwindikgeit haben, und man begniigt sich daher bey jenen
mit der parabolischen Theorie, so lange man keine bessere
fiur die Austbung hat. Denn wenn gleich die gréfiten Ma-
thematiker sich damit beschdiftigt haben, [....] so fehlt diesen



Bemiihungen doch noch gar vieles zur wirklichen Ausibung.
Man kann indessen hiertiber vorziglich die oben angefiihrten
Schriften von Robins, Euler, dArcy, Tempelhof nachlesen...

Ein weiteres Zitat gibt uns 1811 der Major C.F. SEYDELL in seinem
Buch iiber den Gebrauch des kleinen Gewehres auf Seite 233 ([49]):

Das Gesetz, nach welchem die Bahn der Kugel etwa zu bestim-
men seyn mdchte, kann hier nicht vorgetragen werden, indem
es zu den schwierigsten mathematischen Problemen gehéret,
und nach allen bisherigen Versuchen groffer Mathematiker
noch nicht zu allgemeiner Zufriedenheit aufgelost worden ist.

Schade, dass fir diesen Gegenstand auch im Praktischen
so wenig geleistet worden ist! AufSerdem, was in dem Sten
Bande des Handbuchs des Herrn General von Scharnhorst
tber diesen Gegenstand vorkommt, ist mir kein Werk bekannt,
worin man aus Versuchen etwas Bestimmtes tiber die Bahn
der Kugel angegeben hdtte.

Und sucht man weiter in einer alten Bibliothek, so liest man bei G. VON
SCHARNHORST (1755 - 1813): Uber die Wirkung des Feuergewehrs. Fiir
die Koniglich preusssischen Kriegs - Schulen, Berlin 1813, in Paragraph
12:

Man siehet hieraus, dass die parabolische Theorie auf alle
Distanzen und bei allen Ladungen, welche bei den gewdhnli-
chen Mérsern in einer Belagerung vorkommen, sich anwenden
lasst; und da die Anwendung der ibrigen Theorien weitldufige
Berechnungen erfordert und keine grofiere Genauigkeit leistet,
so kann man ste véllig entbehren.

Erst der franzosische General ISIDORE DIDION beschreibt in seiner Traité
de ballistique von 1848 und in der Zweitausgabe 1860 die ballistische Kurve
sehr konsequent nicht mehr als Parabel, sondern durch die asymptotische
Darstellung (4.78) . Man hatte nun erkannt, dass beim Anndhern an die
Schallgeschwindigkeit der Luftwiderstand nicht genau nach dem quadra-
tischen Gesetz verlduft und eine asymptotische Theorie zur gendherten
Beschreibung von ballistischen Flachbahnen vo6llig ausreichend ist.



Zunéachst kann die Flugzeit T der ,,Kanonenkugel“ bei einem horizon-
talen Gelande abgeschétzt werden. Mit (4.76) ergibt sich fiir die Flugzeit
bei vorgegebener Wurfweite W

1
T= o (ehWeelel ) 4.85
Tron \© (4.85)

Diese Gleichung war auch schon J.H. LAMBERT bekannt. Um mit Hilfe der
asymptotischen Lambertschen Formel (4.78) die fir praktische Anwendung
wichtige Wurfweite (Schussweite) in einem horizontalen Geldnde bei
Flachbahnen abzuschdtzen, muss man die nichttriviale Wurzel W oder
fiir die Rohrerh6hung den Winkel © der transzendenten Gleichung

g sec[O]
2k v} ) W=
(exp [2ksec[®) W] —1). (4.86)

0 = (tan[@] +

__9
41{:211(2)

bestimmen. Die Auflésung nach W gelingt relativ einfach durch Ein-
fiihrung einer neuen transzendenten Funktion, die in der Literatur als
Produktlogarithmus oder Lambertsche W |z] Funktion bezeichnet wird.”
Diese Funktion erfiillt die Gleichung

Wz eWE = » (4.87)

und spielt in der mathematischen Physik eine wichtige Rolle. Die Funktion
besitzt im Intervall z € (—1/e, 0) zwei Aste, die mit Wo[z] und W _1[2]
bezeichnet werden. Fiir das ballistische Problem bendtigen wir den zweiten
Funktionsast. Mit den Hilfsvariablen

2
14279 el
9

B
X = 2ksec[®O)W (4.88)

lautet die transzendente Gleichung (4.86)

X =l + 5 X]. (4.89)

"Hierzu muss bemerkt werden, dass J.H. Lambert selber nie diese nach Ihm benannte
W]|z] Funktion auf das ballistische Problem angewendet hat.



[0 [ p=01]p=10]p=100

5 [ 0.87991 [ 0.15604 | 0.01717
10 || 1.23594 | 0.28073 | 0.03343
15 | 1.44232 | 0.38005 | 0.04838
20 || 1.57045 | 0.45779 | 0.06160
25 || 1.64604 | 0.51648 | 0.07278
30 || 1.68109 | 0.55786 | 0.08166
35 || 1.68205 | 0.58318 | 0.08804
40 || 1.65276 | 0.59333 | 0.09179
45 || 1.59563 | 0.58901 | 0.09284
50 || 1.51223 | 0.57077 | 0.09118

Tab. 4.1: Die dimensionslos skalierte fiinfstellige Wurfweite kW als Funk-
tion des Elevationswinkels © und dreier Parameterwerte p = g/(kv). Die
Zahlen sind in der siebten Stelle nicht gerundet und wurden durch genaue
numerische Integration der Differentialgleichung (4.117) gewonnen.

Die Losung dieser transzendenten Bedingung ist

e~1/8 1

Durch Einsetzen der Wurfweite W in (4.85) und Umformung ergibt sich

) T= k%o <\/ﬂ W_, ( 6;”) - 1) (4.91)

Damit sind wesentliche dynamischen Grofien der ballistischen Kurve in
dieser Néaherung bekannt. Die obige Formel fiir die Wurfweite W ist
zwar exakt, aber nur im Sinne der Lambertschen Approximation erster
Ordnung fir flache Elevationswinkel © < 25°.

Mit dieser asymptotischen Formel ist ein praktisches Problem von
L. EULER aus dem Jahre 1745 gelost. In der Tabelle (4.1) sind einige
Wurfweiten mit drei unterschiedlichen Parametern y = g/(kv) als Stan-
dard mit hoher akademischer Genauigkeit durch numerische Integration
berechnet worden. An diesen Zahlenwerten muss sich jede gendherte ana-
lytische Formel messen lassen. Durch die Unsicherheiten im ballistischen
Koeffizienten k(M) bleiben die Ergebnisse natiirlich rein , akademisch*,




Die Wurfweitenformel in dem 1781 zunéchst unter Verschluss gehalte-
nem Buch Le Bombadier Prussien von G.F. TEMPELHOF sind allerdings
noch komplizierter als die Obige und in der Praxis wohl nie verwendet
worden. Fin interessanter Zeitzeuge zu diesem Problemkreis war der
Astronom F. X. VON ZAcH (1754-1832), Direktor der Sternwarte auf
dem Seeberg bei Gotha. Anonym rezensierte er eine neuere ballistische
Untersuchung des Mathematikers J.F. HENNERT aus Utrecht. Unter der
Rubrik Kriegswissenschaft liest man in der Allgemeine Literatur - Zeitung
von 1796:([67])

, Die vierte Abhandlung handelt von der Wurfweite der Bom-
ben. Seit Newton und Euler haben die Geometer nicht aufge-
haort, sich mit dieser ballistischen Aufgabe zu beschiftigen. Die
Arbeiten eines Bezour, Borda, Legendre sind bekannt; allein
nach der vollstindigen Ernte, die der beriihmte General v.
Tempelhof auf diesem Felde gehalten hat, bleibt nicht mehr
viel zur Nachlese iibrig. Die Auflosung, die uns dieser gelehrte
Mann in seinem ,, Bombardier prussien® von dieser Aufgabe
gegeben hat, ist ganz neu, und hdngt mit keiner der bekannt-
gemachten zusammen.

So glinzend aber auch alle diese Untersuchungen sind, so
finden sich doch hin und wieder in der Ausfiihrung eigene
Schwierigkeiten, und sie stimmen nicht immer mit den Er-
fahrungen und den angestellten Versuchen tberein. Unser
Vf.(HENNERT), der in tiefen mathematischen Kenntnissen
niemanden nachsteht, hat sich daher auch an dieses Problem
gewagt, und er gibt davon zwei sehr kurze Auflésungen, die
in der wirklichen Austibung beim Bombenwurf genau genug
scheinen. Was die Bewegung der Kanonenkugel betrifft, so
ist thm seine Untersuchung nur bis zu einer Elevation, die
nicht uber 20 Grade geht, gegliickt. Der Fall trifft wohl auch
selten, dafl man Kanonen iber 30 Grade hochrichtet; auch
kénnen die Schiisse bei einer solchen Erhohung nicht genau
beobachtet werden.

Um seine Leser nicht auf die Elementarwerke tber diesen
Gegenstand zu verweisen, so wiederholt der gelehrte Vf. hier



klirzlich die ersten Anfangsgrinde der Ballistik in einem wi-
derstehenden Mittel, der Luft, und setzt alsdann seine Unter-
suchungen weiter fort: Die Grenzen einer Rezension erlauben
uns nicht, den Vf. hierin weiter zu verfolgen, allein auf des Ei-
gentimliche der Auflésung missen wir den Leser aufmerksam
machen. Dahin gehort vorziiglich die §9. angegebene Approxi-
mationsmethode. Die Geometer, die bisher durch eine einzige
Kurve, oder durch ihre einzige Gleichung, die Bewegung der
Korper in einem widerstehenden Medio ausdriicken wollten,
haben sich von der Wahrheit zu weit entfernt. Unser Vf. be-
trachtet den aufsteigenden Zweig (Branches) dieser krummen
Linie ganz getrennt; er zeigt, wie man den aufsteigenden
Zweig der Kurve im widerstehenden Medio durch eine Annd-
herungan die Parabel finden kénne, und beweist nachher, dass
der absteigende Zweig dieser Kurve dem auffsteigenden nicht
ahnlich sei, und gibt fiir diesen Zweig eine zweite Anndherung
durch die Parabel.

So weit ein Ausschnitt der Rezension. Die von HENNERT benutzte
Approximation war iibrigens keineswegs besser als die von LAMBERT.
Trotzdem zeigt der obige Artikel in einer Literaturzeitung, wie populér
das ballistische Problem gegen Ende des 18. Jahrhunderts noch war.

4.6 Numerische Integration

Da das ballistische Problem selbst im engeren Sinne ein schwieriges
analytisches Problem darstellt, konnen die entsprechenden Differenti-
algleichungen natiirlich recht einfach numerisch integriert werden. Zu
diesem Zwecke schreiben wir die beiden Bewegungsgleichungen explizit

F+ki2 492 0,
J+kvVi2+929+g = 0 (4.92)

oder mit
Vg = @& vy =7 (4.93)



einfacher

bw—i—k,/v%—i—v;vw = 0,
Oy +kyfv2+viv,+g = 0. (4.94)

Die naheliegende dimensionslose Skalierung besteht darin, als dimensi-

onslose Zeiteinheit
T=vkgt (4.95)

einzufithren. Der Geschwindigkeitsvektor wird dann mit der Grenzge-
schwindigkeit 1/g/k geméif

9 g
Uy = \/;vg; Uy =) U (4.96)

skaliert. Auf diese Weise ergeben sich die gekoppelten Gleichungen

Ve(T) + 4/ ve(7)? + vy (T)2 ve(r) = 0,
vy (T) + 1/ ve(T)2 + vg(1T)2 vy () +1 = 0. (4.97)
Fihrt man noch den Parameter
k U(Q)
V= — 4.98
p (4.98)

ein, welcher das Verhéltnis der Bremsbeschleunigung der Luftreibung am
Abgangsort zur Erdbeschleunigung darstellt, kénnen die obigen Gleichun-
gen mit den Anfangsbedingungen

ve(0) = Vv cos[®],  v,(0) = /v sin[O)]. (4.99)

numerisch gelost werden. Will man auch die Bahnkurve ableiten, so
miissen noch zusétzlich die Gleichungen

ve—vE& =0, wv,—vy =0 (4.100)
integriert werden. Bei dieser Skalierung ist zu bedenken, dass die physi-

kalischen Koordinaten nun durch die Skalierung

2 2
9 9



gegeben sind.
Auf diese Weise ist es relativ leicht moglich, zu demonstrieren, dass
die Relation des Hodographen der ballistischen Kurve

2
Cu= -+, 14 (“—”) + arcsinh (”i) (4.102)
’U5 Ve Ve Ve

ein Integral der Bewegung ist. Auch die Fvolute — das heifit die Ortslinie
der Mittelpunkte der Kriimmungskreise der ballistischen Kurve — kénnen
numerisch nach den Formeln

B vn(vf + v%)

e = Vevy — vév,,
ve(v2 4+ v2)
g = n4—8& (4.103)

Y
’Ugvn ”g”n

berechnet werden. In der Figur (4.9) ist eine ballistische Normalkurve
mit gy = 1 und ihre zugehorige Evolute graphisch dargestellt. Ganz
grob kann man immer noch die alte Impetushypothese des spatantiken
Gelehrten J. PHILOPONOS (~ 490— ~ 575) aus Alexandria erkennen:
Zwei Geraden als Asymptoten und - als spatere Verbesserung - zwischen
den beiden ein fast kreisférmiger Ubergang. Das hatte I. NEWTON wohl
gegen Ende des 17. Jahrhunderts veranlasst, die ballistische Kurve als
eine Hyperbel aufzufassen.
Fast iiberfliissig noch zu bemerken, dafl mit der komplexen Groéfle
(2 = 1)
V=g + 10, (4.104)

die obigen Bewegungsgleichungen in der Form

V4 |viv+e=0 (4.105)

geschrieben werden koénnen, die mit der Anfangsbedingung

v(0) = ”970/16 e® = ve® (4.106)

gelost werden muss.
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Fig. 4.9: Die Evolute (lila; Ortskurve der Bertihrungskreis - Mittelpunkte)
der ballistischen Normalkurve (blau), bei der die Geschwindigkeit am Schei-
telpunkt gleich der Grenzgeschwindigkeit \/g/k ist. Man sieht hier, dass der
Punkt mazimaler Krimmung nicht im Gipfelpunkt der Bahn liegt. Die alte
Impetushypothese (, Tragheits - Hypothese®) des Mittelalters ist keine sehr
gute Approzimation der Wurfkurve gewesen - aber im Prinzip asymptotisch
richtig.

4.7 Historische Zahlenbeispiele

Die Berechnung von Wurfweiten war gegen Ende des 18. Jahrhunderts ein
aktuelles Forschungsproblem.® Als Beispiel sei hier die Tabelle (4.10) und
die rechnerische Auswertung (4.11) zur Schussweite einer franzdsischen
Kanone aus dem Jahre 1771 vorgelegt. Wahrscheinlich handelte es sich
dabei um eine Vorlduferversion der Canon de 12 Gribeauval der franzosi-
schen Feldartillerie. JEAN-BAPTISTE VAQUETTE DE GRIBEAUVAL (1715 -
1789) war Begriinder eines einheitlichen Systems von Geschiitzen, welches
auf alteren Konzepten von JUSTIN AMEDEE ETHAN DE MUSTEVE von
1765 aufbauten. GRIBEAUVAL ist auch bekannt fiir die Konstruktion der
Gribeauval - Lafette, die in den napoleonischen Kriegen eine grofie Rolle
spielte.

Die beste Anpassung an die alten historischen Datenpunkte liefert

8 Angeblich konnte der franzésische Mathematiker P.S. Laplace 1789 durch Berech-
nung von Artilleriegeschossbahnen seinen Kopf in der Revolution retten. Uber sein
Rechenverfahren ist aber nichts bekannt



Angle | Portées | "Refule [ Errears | Refale | Erreurs
de Pro | moyen- | dela I de la II.
jedtion, | mes. methode methode
degrés | toifes - :

20 414 | 402,6 | J-11,4| 388 | 26,2

30 [ 499 | 504 | —5 | 486 |4 13

40 | 568 | 547,5 |420,5| 542 |4 <6

43 524 | 547 |— 23| 53¢ |—9

45 515 | 544 |— 29 | 5290 |— 14 -

so | 497 P 529 [— 33| 533 |— 36

60 |446,5 | 426,5 [} 20 | 437 |4 9,5

70 | 331 | 3388 | —7 |30 |4 11

75 370 | 265 45 | 248 |4 22

—39¢ + 58,7

Fig. 4.10: Schussweiten von Kanonenkugeln, wie sie 1771 an der Artil-
lerieschule a la Fére in Frankreich gemessen wurden (1 Toise = 1.949 m).
Bei der verwendeten Kanone handelt es sich wahrscheinlich um einen 12
Pfiinder. Hennert wertet 1796 mit zwei unterschiedlichen Naherungsformeln
diese Daten aus ([07]).

iiberraschend die numerische Integration der ballistischen Kurve mit den
Parametern

vo ~ 133.5m/s, Vg/k~127.3m/s (4.107)

Die Qualitdt des Fits wird durch die Streuung o = 27.9 m ausgedriickt.
Fiir die Lambert - Approximation gilt dagegen vg = 120 m/s und \/g/k =
176 m/s. Die Streuung betrédgt hier o = 34.8 m. Die exakte numerische
Integration bevorzugt gegeniiber der analytischen Approximation eine
etwas hohere Anfangsgeschwindigkeit, dafiir aber eine deutlich niedrigere
Endgeschwindigkeit. Alle Geschwindigkeiten liegen aber im subsonischen
Bereich. Bemerkenswert ist allemal, daf} trotz sehr roher Wurfdaten aus
dem Jahre 1771 die Signatur einer ballistischen Kure sehr deutlich zu
Tage tritt. Die theoretischen , Fits“ der Ergebnisse nach HENNERT aus
dem Jahre 1799 sind da schon etwas schlechter (griine und orange Punkte).
Fiir den ersten Fit gilt die Streu-Qualitdt o = 38.1 m, flir den zweiten
o = 36.4 m, also etwas besser. Die Hauptursache der Residuen diirfte
einerseits bei der Anfangsgeschwindigkeit vy liegen, die abhéngig von
Pulvermenge, chemischen Pulverqualitét, Geschossmasse und Rohrldnge
ist, andererseits in einer Abdrift der Kanonenkugeln durch induzierte
Rotation (Magnuseffekt) oder Windscherung.
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Fig. 4.11: Auswertung der Schussweiten einer wahrscheinlich 12-pfindigen
franzésischen Artilleriekanone des Gribeauval-Systems von 1771, wie sie in
der Tabelle (4.10) dargestellt sind. Die blauen Punkte sind die originalen
Messdaten, rosaroten Punkte stellen den ,best-fit“ der Wurfweiten dar, abge-
leitet aus einer numerischen Integration der ballistischen Kurve, die blaue
durchgezogene Linie ist die beste Lambert- Approximation und die grinen und
orangen Punkte reprdsentieren die theoretischen Ergebnisse von HENNERT
aus dem Jahre 1799.

Doch wie schon weiter oben durch das Zitat von G. VON SCHARNHORST
belegt, benutzte man in den meisten Féllen einfach die parabolische
Theorie, also fiir die Schussweite W und die Visiererh6hung © im ebenen
Gelidnde die Formeln (siehe 3.3)

2
W= gn@e)y  sn2o) =" (4.108)
9

Doch diese Formeln sind natiirlich fiir Kanonenkugeln bei hoheren Ab-
schussgeschwindigkeiten unzureichend. Etwa 40 Jahre nach der Arbeit
von HENNERT erhielt zu Beginn des Jahres 1842 der Direktor der Berliner
Sternwarte, J. ENCKE (1791 - 1865), ein ehemaliger Artillerieleutnant
der Befreiungskriege, vom Preuflischen Generalstab ein Schreiben, in dem
er als Gutachter fiir eine Versuchsreihe zur Schussweite von Geschiit-
zen Stellung beziehen sollte. In einem Brief vom 24. Mai 1842 an den
Mathematiker C.F. GAUSS schreibt er unter anderem ([23]):



Fig. 4.12: Die Canon de 75 modéle 1897 war ein leichtes franzésisches
Feldgeschiitz gegen Ende des 19. Jahrhunderts, welches durch die Kombinati-
on verschiedener neuer Funktionen die Artillerie revolutionierte. Verwendung
einteiliger Patronenmunition, Nordenfelt - Schnellfeuerverschluss, Wieder-
spannabzug und eine Lafette mit Sporn. Der Brems - und Vorholmechanismus
der 75er war ein hydropneumatisches System. Miindungsgeschwindigkett:
vog = 530 [m/s| (Schrapnell) und vo = 580 [m/s] (Sprenggranate). Reichwei-
te: 6800 — 11200[m|. (Quelle: wikimedia commons, PHGCOM, Musee de
I’Armee, Paris)

... Vor einigen Monaten erhielt ich von dem Chef der Artillerie
eine Aufforderung, mich wber die Art zu duflern, wie die
Versuchsresultate der Artillerie zu behandeln seyen, um sowohl
einesteils Schusstafeln zu erhalten, welche auch die mdglichen
Abweichungen geben, anderenteils bei kiinftigen Versuchen
eine Leitung zu haben und die Theorie zu vervollkommnen. Es
war dabei ausdricklich bemerkt, dass man winsche, ich solle
von der bisherigen ballistischen Theorie wo mdéglich keinen
Gebrauch machen, da sie sich ungentgend erwiesen. Als ein
Beispiel waren folgende Zahlen gegeben, welche, wie ich spdater
erfuhr, zu einem 50 Pf. Morser, wo die Bombe etwa 8% Zoll
im Durchmesser hatte und das Geschoss etwa 6 Kaliber lang
war, gehorte.

Ob das Geschoss jetzt eine Kugel war oder schon mehr ein Langgeschoss,
geht aus den Angaben nicht klar hervor. ENCKE notiert jetzt eine Tabelle



] 1° 5° 10° 15° 20°
zw | 912 | 290.9 | 510.2 | 707.6 | 864.0
ow | 45| 147| 145| 211| 235
aw | 201.7 | 754.2 | 1303.1 | 1729.9 | 2212.0
ow | 148 | 227 | 343 | 265 | 414
zw | 358.0 | 1026.8 | 1716.8 | 2319.7 | 2832.4
ow | 221 197| 309| 459 | 381
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Tab. 4.2: Die Schusstafel des Preuffischen Generalstabes von 1842, wie sie
ENCKE mitgeteilt wurde. Die erste Spalte enthdlt die Menge der Pulverladung
(die letzten beiden Werte von 8 Pfund waren nicht notiert und wurden hier
aus der energetischen Proportion vo < \/Mpyiver abgeschitzt), die zweite
markiert die Schussweiten und die Standardabweichung in der Ldngeneinheit
[l] (1 Schritt = 0.75 [m]), die dritte bis siebente Spalte die entsprechenden
Werte fur die finf verschiedenen Elevationswinkel. Bei den Streuwerten ist zu
bedenken, dass erst ab 1860 drallstabilisierte Geschosse (spiralférmig gezogene
Kanonenrohre) verwendet wurden.

fiir die mittlere Schussweite und deren Streuung fiir 3 verschiedene Pulver-
ladungen und 5 verschieden Elevationswinkeln. Die Entfernungen waren
noch in Schritten angegeben. Ich nehme hier an, daf§ 1 Schritt = 0.75m
ist. Fiir jeden Winkel wurden 15 Versuche gemacht, so dass insgesamt
5 mal 15 mal 3 gleich 225 Weitenmessungen durchgefiihrt wurden. Bei
den Versuchen wurde offenbar genau auf die Lage des Schwerpunktes
der Kanonenkugeln geachtet — die wohl genau mittig sein musste. J.
ENCKE schreibt: Man bestimmit jetzt die Lage des Schwerpunktes, indem
man die Kugeln auf Quecksilber schwimmen lisst. Und etwas spéter: Mir
sind Versuche mitgetheilt, wo unter dhnlichen Verhdltnissen die Schuss-
weite bei Schwerpunkt unten 838.0 Schritt betrug, bei Schwerpunkt oben
aber 1362.1 Schritt. Dieser Effekt ist natiirlich auf den Magnuseffekt bei
schnell rotierenden Kugeln zuriickzufithren, den schon B. ROBINS kannte,
aber ENCKE nicht erwdhnt. Der ehemalige Artillerieleutnant der Befrei-
ungskriege und Direktor der Berliner Sternwarte, J. ENCKE, machte in
seinem Brief an C.F. GAUSs von 1842 dann iiber die Schusstabelle die
interessante Bemerkung:

Der Versuch, die bisher bekannten ballistischen Formeln mit
diesen Zahlen in Ubereinstimmung zu bringen, ist mir nicht
gegliickt. Wenn man die Konstante des Widerstandes und die
Anfangsgeschwindigkeit aus irgend zwei Werten bestimmt, so
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Fig. 4.13: Die Auswertung der simulierten Schusstabelle fir 2 Pfund Pulver-
ladung. Der Fit mit der Formel (4.90) liefert die Werte vo = 115 4+ 2 [m/s]
und voo = 125 £ 5 [m/s].

weichen die tibrigen viel zu stark ab.

Hier dringt sich die Frage auf: Welche ballistische Formel hat ENCKE
herangezogen und warum benutzt er nicht die Methode der kleinsten
Quadrate auf ALLE Werte der Tabelle, genau wie er es als Himmels-
mechaniker bei den Ortern von Kometen an der Himmelskugel immer
anwendet? Der Brief gibt hieriiber keine Auskunft. In den Figuren (4.13,
4.14,4.15) habe ich diese Rechnung nachgeholt und man sieht eine relativ
gute Ubereinstimmung mit der ballistischen Formel (4.90) — aufer bei dem
unrealistischen Elevationswinkel von 1 Grad. Die Lambert-Approximation
scheint fiir Elevationen kleiner 20 Grad voéllig ausreichend zu sein, was
auch durch eine numerische Integration fiir alle drei Félle gezeigt wer-
den kann. Merkwiirdig ist nur, dafl die Grenzgeschwindigkeit bei (4.13)
etwas niedriger als bei den anderen fast iibereinstimmenden Versuchs-
werten liegt. Wie das zu erklaren ist, bleibt unklar. Zumindest scheint
die Pulvermenge und die Anfangsgeschwindigkeit durch die energetische
Beziehung

VE ~ MPpulver (4.109)

verkniipft zu sein, wie man es bei identischen Kugelmassen erwartet. Alle
Geschwindigkeiten lagen bei diesen Versuchen unter der Schallgeschwin-
digkeit - waren also subsonisch.

Erst die Erfindung des Ballistit im Jahre 1887 durch ALFRED NOBEL



2000 %
/

=
3
o)

Schussweite [m]
=
IS
o

8

0 5 10 15 20
Elevation 6 °

Fig. 4.14: Die Auswertung der simulierten Schusstabelle fir 5 Pfund Pulver-
ladung. Der Fit mit der Formel (4.90) liefert die Werte vo = 180 & 2 [m/s]
und voo = 211 + 10 [m/s]. Bei 15 Grad Elevation sieht man den von C.F.
GAUSS bezweifelten Wert. Ob hier ungewohnliche Windgeschwindigkeiten oder
eine starke Rotation der Mérserkugel (Magnuseffekt) eine Rolle gespielt hat,
bleibt unklar.

ermoglichte es, supersonische Abschussgeschwindigkeiten bei Geschiitzen
zu erreichen (siehe Fig. 4.12). Ballistit ist eine Weiterentwicklung der
Sprenggelatine und ist ein energiereiches rauchschwaches Pulver, welches
das Schwarzpulver (starke Rauchentwicklung) ersetzen konnte. Die Ab-
brenngeschwindigkeit des Ballistit ist extrem schnell, aber doch langsam
genug, um im Geschiitzlauf keinen zu hohen Druck entstehen zu lassen.

Interessant ist noch die Antwort von C.F. GAUSS vom 15. August
1842 auf die damaligen Probleme ([23]): Fir Ihre Mitteilung der Artillerie
Versuche bin ich ihnen sehr dankbar. BESSELS Aburteilung ist unstreitig
zu schroff. Es gibt ohne Zweifel viele Félle, wo man Beobachtungszahlen,
auch ohne sie mit einer Theorie bemeistert zu haben, mit Nutzen einer
Interpolation unterwerfen kann, in so fern man von der wirklichen Zu-
verldssigkeit aller jener Beobachtungszahlen eine véllige Uberzeugung hat.
Von der anderen Seite ist kaum zu leugnen, dass gerade dieser Uberzeu-
gung zumahl bei etwas verwickelten Gegenstdnden die volle Lebendigkeit
fehlen kann, wenn man nicht ihren Zusammenhang unter sich mit einer
FEinsicht in ihre Theorie durchdringt...

GAuUss driickt dann einigen Zweifel beziiglich bestimmter Daten aus
und bemerkt, dass man eigentlich simtliche Versuchsbedingungen kennen
miisste. Er schlagt zudem vor, die Bahn der Kanonenkugel durch mehrere
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Fig. 4.15: Die Auswertung der simulierten Schusstabelle fir wahrscheinlich
8 Pfund Pulverladung. Der Fit mit der Formel (4.90) liefert die Werte
vo = 220 + 3 [m/s] und veo = 194 £ 7 [m/s]. Eine Methode der numerischen
Integration liefert praktisch die gleichen Werte.
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Fig. 4.16: Die Abhdangigkeit der Abschussgeschwindigkeit der Kanonenkugel
von der verwendeten Pulvermasse. Die energetische Beziehung (4.109) scheint
recht gut erfillt zu sein.

schicklich aufgestellte Theodoliten trigonometrisch zu vermessen. Diese
von GAUSS geforderte Vermessung wird heutzutage durch eine teure
MSP - Multi Sensor Plattform erledigt.’

In dem historischen Heimatbuch Meppen in alten Ansichten von H.

9Bei der Firma Rheinmetall Defence heifit es hierzu: Die Multi Sensor Plattform



HEEREN und D. STOCKMANN wird unter anderem iiber den Besuch von
Kaiser Wilhelm II in Meppen erinnert, der den Krupp’schen Schiefiplatz
1892 besuchte'?. Es heifit dort:

Am 28. April 1892 traf der Kaiser mit grofiem Gefolge in
Meppen ein, wo das Schieflen sofort begann: Zundchst wurde
aus leichten Kanonen, dann aber aus ganz schweren Schnell-
feuerschiffsgeschiitzen auf Scheiben geschossen und zwar auf
eine Entfernung bis zu 16 Kilometern. Nachmittags begann
das Schieflen mit schweren Schiffsgeschiitzen. Der Kaiser du-
Perte zu Krupp'! seine grofie Befriedigung. Bei seiner Abfahrt
wurde ein Salut von 35 Schiissen abgegeben.

C. CRANZ bezieht sich in seinem Lehrbuch von 1910, Seite 102, auf
dieses Ereignis und gibt mit vorgegebenen Anfangswerten eines speziellen
Geschiitzes die Eckdaten der ballistischen Kurve an. Wir wollen hier diese
Rechnung wiederholen und dann Vergleiche anstellen. Anfangsgeschwin-
digkeit und Elevation sind

vo = 640m/s; O = 44°. (4.110)

Die Art des verwendeten Luftwiderstandsgesetzes erfihrt man nicht, nur
das die Grenzgeschwindigkeit bei

Voo = \/g ~ 580m/s (4.111)

liegen soll. C. CRANZ errechnet ohne Angabe eines Verfahrens die Eck-

MSP ist eine mobile, hoch prazise 3D Tracking-Messeinrichtung fiir das Registrie-
ren und Analysieren von ballistischen Flugbahnen und nicht ballistischen Fligen
mit den Genauigkeiten, die fiir einen Theodoliten im Feldeinsatz typisch sind. Die
Messresultate in Realzeit erreichen eine Winkelauflésung in Azimut und Elevation
von 0,6 Bogensekunden...

10Seit 1987 Wehrtechnische Dienststelle 91 (WTD91)

HFRIEDRICH ALFRED KRUPP (1854-1902)



Meppen, 28. April 1892

Vorfithrung von Marinegeschiigen vor 8. Maj. Kaiser Wilhelm 11

. Budde
12 Krone

Fig. 4.17: Der Besuch von Kaiser Wilhelm II am 28. April 1892 auf dem
Schiefiplatz bet Meppen. Zu sehen sind zwet Mantelringkanonen fir die Marine
des ausgehenden 19. Jahrhunderts. (Quelle: BAAINBw, Aus der Geschichte
der WTD 91)

daten

Horizontale Schussweite 19066 m
Flugzeit (T) 68.8 s
Aufprallgeschwindigkeit 380.4m/s
Spitzer Aufprallwinkel 58° 21’
Scheitelabzisse 10840 m
Scheitelordinate (H) 6150 m
Vertikale Asymptote 29300 m

Mit der Niherung T = /8 H/g ergibt sich mit g = 9.81m/s?> und
der angegebenen Scheitelhéhe H die Flugzeit zu T = 70.8s - also in
ausreichender Ubereinstimmung. Doch die Ergebnisse lassen sich mit
einem rein quadratischen Widerstandsgesetz nicht exakt reproduzieren;
zumindest dann nicht, wenn man als Grenzgeschwindigkeit 580 m/s und
keine Abnahme der Luftdichte mit der Hohe annimmt. Lésst man den
Exponenten n des Widerstandsgesetzes v™ und die Grenzgeschwindigkeit



Uso als freie Parameter, so lassen sich die horizontale Schussweite und die
Scheitelabzisse recht gut durch die Gréflen

n~ 2.2 und ve, ~ 469m/s (4.112)

darstellen. Hieraus kann man vorsichtig schlieflen, dal C. CrRANZ die
obigen Bahndaten mit dem quadratischen Widerstandsgesetz n = 2
berechnet hat. Der beste Fit ergibt sich dann fir

Voo ~ 474 m/s. (4.113)

Durch numerische Integration als auch durch die Integraldarstellung
ergeben sich dann iibereinstimmend die folgenden Bahndaten:

Horizontale Schussweite 19062 m
Flugzeit (T) 70.8 s
Aufprallgeschwindigkeit 338.9m/s
Spitzer Aufprallwinkel 61°3’
Scheitelabzisse 10924m
Scheitelordinate (H) 6226 m
Vertikale Asymptote 27961 m

Wie man sieht, stimmen die exakten Werte mit denen von CRANZ aus
dem Jahre 1910 mehr oder weniger gut iiberein. Mit der Ndherung
T = /8 H/g ergibt sich mit der bekannten Scheitelhohe hier die Flugzeit
zu T = T1.3s, also in guter Ubereinstimmung mit der numerischen Inte-
gration. Um 1900 war eben die Berechnung einer ballistischen Flugbahn
mit numerischen Hilfstafeln keine sehr leichte Aufgabe.

4.8 Die échelle ballistique des J.H. Lambert

Die ballistische Kurve ist im einfachsten Fall durch drei Randbedingungen
gekennzeichnet: Anfangsgeschwindigkeit vo, Elevation © beim Abschuss
und schlielich den ballistischen Parameter k. Wie lassen sich diese drei
Parameter moglichst kompakt in ihrem Einfluss auf eine ballistische Kurve
graphisch darstellen? Im Dezember 1767 begann J.H.LAMBERT, dieses
Problem mit Hilfe der umfangreichen numerischen Tabellen des H.F.



VON GRAVENITZ (1744-1764) durch seinen graphischen échelle ballistique
zu 16sen. Im April 1773 begann er, seine Ergebnisse niederzuschreiben
und sie im selben Jahr und in einer Ergénzung 1775 zu veroffentlichen
([30)):

Betrachten wir zunéchst die verschiedenen fundamentalen Lingenein-
heiten des ballistischen Problems. Diese sind

2 2
Y. Yn, 1 Yo

9’ g’ kK kg
Die Grofle vy bezeichnet hier die Geschwindigkeit am Scheitelpunkt
der Bahn und k& = kp den Luftwiderstandsbeiwert der Dimension einer
inversen Lénge. In einem Memoire und einem Buch zwischen den Jahren
1765 - 1767 ging J.H. LAMBERT das ,ballistische Problem“ neu an
und erlangte fiir die ballistische Kurve im engeren Sinne eine sehr gute
analytische Approximation, die besser als die Reihenapproximation von L.
EULER war. Wir benutzen zunéchst die dritte Skalierung und definieren
wie J.H. LAMBERT 1766 eine Lange L geméif

(4.114)

L=- 4.115
. (4115)
und haben so die dimensionslosen Skalierungen
1 1
T = ﬁg, Y=g (4.116)

Damit lautet die Differentialgleichung (4.46) dritter Ordnung ohne den

Faktor 2
0" =1+, (4.117)

Die Anfangsbedingungen sind jetzt
1
n[0] = 0; n'[0] = tan[O]; n”[0] = —5H sec[0]?, (4.118)

wobei p durch

= ki? - (“°°>2 = \/g (4.119)



gegeben ist. Der Parameter stellt somit das Verhéltnisquadrat von Grenz-
fallgeschwindigkeit zur Abgangsgeschwindigkeit dar. In der Artillerie
des 18ten Jahrhunderts diirfte dieser Parameter in der Gréflenordnung
von p > 1 gelegen haben, wenn wir fiir eine fallende Kanonenkugel
als Grenzgeschwindigkeit die Schallgeschwindigkeit annehmen wollen.
Aus diesem System kann man die beiden wichtigsten semikonvergenten
Reihenentwicklungen der ballistischen Kurve im engeren Sinne nach L.
Euler (1745) und J.H. Lambert (1766) ableiten. Zur Losung machen wir
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>03
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[3V)
1l
=02

N
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°f

0.6 12

£=2kx
Fig. 4.18: Sechs verschiedene ballistische Kurven aus einer numerischen
Integration der Differentialgleichung (4.117) fir uw = 1 und den Elevations-

winkeln von 25°,30°,35°,40°,45° und 50°. Deutlich ist die Abweichung von
der ,Wurfparabel“ zu erkennen. Mazimale Schussweite liegt hier bei etwa 40°.

mit dem Entwicklungsparameter p (4.119) einen Storungsansatz einer
gradlinigen Bahn'?

n[¢] = tan[O] € + Zu 15 (€ (4.120)
einschliefflich der Anfangsbedingungen fiir j = 1

0] = 0: 0] = 05 0] = — secfe]? (4.121)

und fiir alle anderen j > 2

1;(0] = 0; 7;[0] = 0; 7;[0] = 0. (4.122)

2Diesen Ansatz hat J.H.Lambert so nicht gemacht



Diese Entwicklung entspricht so einer Funktions - Iteration, wobei in
ynullter Naherung® die gradlinige Bahn mit unendlich hoher Geschwin-
digkeit (= 0) durchflogen wird.

Einsetzen des obigen Ansatzes in die Differentialgleichung (4.117) fithrt
zu der Rekursion

Y] —sec[®]ni[¢] = 0,
1y [€] —sec[®]ny[¢] = 2 sin[O]m €] ny'[€],
(4.123)

Die hoheren Rekursionen werden sehr schnell algebraisch unzumutbar
kompliziert. Wir beschrinken uns hier also auf die erste Ndherung, zu-
mal auch die obige asymptotische Entwicklung semikonvergent ist. Fiir die
Funktion n;[£] erhélt man mit den entsprechenden Anfangsbedingungen

1
m=g (1 + € sec[@] — e Sec[e]) (4.124)
Damit ergibt sich in erster asymptotischer Ordnung fiir die analyti-
sche Darstellung der ballistischen Kurve in dimensionslosen Koordinaten
wieder der Ausdruck

n =tan[O] ¢ + %,u (1 + ¢ sec[O] — €° Sec[@]) . (4.125)

Dies ist aber die schon frither abgeleitete wohlbekannte Lambertsche
Approximation in einer leicht modifizierten Skalierung. J.H. LAMBERT
bemerkte, dass die ballistische Kurve deutlich einfacher und genauer
vom Gipfelpunkt (Scheitelpunkt) der Bahn aus berechnet und dargestellt
werden kann. Denn bei der Kurvenapproximation (4.125) zeigte sich, dass
im absteigenden Ast die Kurve gegeniiber dem wahren Verlauf etwas zu
stark abbiegt und so systematisch eine etwas zu kurze Wurfweite anzeigt.
Auch die néchst hohere Iteration dndert daran nicht viel. LAMBERT legte
den Koordinatenursprung nicht an den Abschussort mit einem bestimmten
Elevationswinkel O, sondern in den Gipfelpunkt. Hier ist sicherlich eine
bessere Konvergenz zu erwarten. Aufgrund des Hodographen (4.25) ist es
zudem moglich, jede ballistische Kurve durch einen einzigen Parameter
wr bzw. vy geméf

kv?
fin = kQQ - gH (4.126)




Fig. 4.19: Die fiinf Figuren im Anhang des Buches tuber Ballistik von J.H.
LAMBERT AUS DEM JAHRE 1766.

zu klassifizieren, wobei wieder g die Erdbeschleunigung, k der als konstant
angenommen Luftwiderstandsbeiwert und vy die horizontale Scheitelge-
schwindigkeit bezeichnet. Der Elevationswinkel © und die Abschussge-
schwindigkeit vg oder p (4.119) am Abschussort sind hier keine priméren
Parameter mehr.

Es gilt mit (4.25) einfach

g sin[©] i g
k02 cos|O] | cos|O]2 + arcsinh [tan[©]] = T a (4.127)

oder o
pr = (+sin[O]) sec[O]” +In [tan [% + 5” o (4128)

Mit Hilfe dieser Beziehung gelang es J.H. LAMBERT, eine Vielzahl unter-
schiedlicher Parameterkombinationen von p und © am Abschussort auf
einen einzigen Parameter py zuriickzufithren.
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Mit (4.125) erhalten wir im Falle © = 0 die Lambertsche Scheitelpunkt
- Approximation

n=%/m (1+&—¢€, (4.129)

wobei hier durch die Wahl des Koordinatensystems die vertikale Koordi-
nate n[¢] rein negativ ist. Durch den Parameter pup wird die nach unter
gerichtete ballistische Kurve gestaucht oder gestreckt, je nachdem wie
der Elevationswinkel und die Abschussgeschwindigkeit sich verhalten.
Die obige Skalierung hat den Nachteil, dass die klassische Wurfparabel
mit k — 0 eine Singularitat darstellt. Wir wéahlen jetzt die neue Skalierung

2

Ul
= — 4.130

und haben so die dimensionslosen Skalierungen
2 2

w=He o, lH, (4.131)
g g

Da wir eine moglichst genaue Kurvenlandkarte zeichnen wollen, greifen
wir jetzt auf die exakten Integrale (4.30) und (4.31) der klassischen
ballistischen Kurve zuriick und erhalten in der Scheitelpunktform

_ /[ sec[0])? do
§= /@ 1—vy (ln[sec[e] + tan[g]] + sec[@] tan[@]) (4.132)
und
o sec[0]2 tan[6] d6
= /e 1 — vy (In[sec[f] + tan[6]] + sec[d] tan[6]) (4.133)

Figur (4.20) stellt ein Replikat der ballistischen Bahnkurven von LAM-
BERT aus dem Jahre 1773 dar. Es wurden acht Kurven mit den Para-
metern 0 < vy < 0.35 in Schrittweiten von 0.05 berechnet, die jede mit
einer Elevation von 45° starten. Alle haben die gleiche Scheitelpunkt-
geschwindigkeit vgy. Die blauen Querlinien bezeichnen Punkte gleicher
Flugbahnwinkel 6 in Schrittweiten von 5° Grad. Mit Hilfe des Hodo-
graphen und einem horizontalen Lineal lassen sich Bahnkurven und
Schussweiten bei Abgangswinkeln kleiner 45 Grad fiir unterschiedliche



Abschussgeschwindigkeiten vg mehr oder weniger genau ablesen. Ein Ver-
gleich dieses Replikats mit der alten schénen Figur (4.21) von LAMBERT
mit den Umrechnungstabellen zeigt sehr gute Ubereinstimmung.

Der Integrand in den Ausdriicken (4.132) und (4.133) wird bei einem
Abgangswinkel von 45° singulér, wenn

1— vy (\/§+ In[1 + \/i]) =0 (4.134)

erfiillt ist. Daraus folgt die Bedingung

1
Vi = V2 +1n[1 + V2]

LAMBERT hat in seiner échelle ballistique fir © = 7/4 den Wertebereich
von vy auf 0 < vy < 0.35 beschriankt. Schon der noch zulédssige Wert
v = 0.40 war wohl fiir die damalige Artillerie ohne Bedeutung.

~ 0.4356... (4.135)

4.9 Storungstheorie der Wurfparabel

Anstatt einer Geraden benutzen wir nun die Wurfparabel als erste Néihe-
rung der ballistischen Kurve. Hier sollte das Problem der Divergenz der
Wurzelfunktion im absteigenden Ast der ballistischen Kurve nicht mehr
auftreten. Wie werden die Wurfweite, die Scheitelhéhe und die Flugzeit
durch das Auftreten eines sehr kleinen Parameter & = kp korrigiert?
Wie wird der Elevationswinkel durch dieses kleine k& bei der maximalen
Wurfweite verdndert?

Um diese Frage im Grenzfall & — 0 zu beantworten, betrachten wir
zunéchst die asymptotischen Ausdriicke der Formel (4.90) im Grenzfall
v =kvd/g — 0 (verschwindend kleiner Luftreibung). Im Falle v — 0
ergeben sich mit (4.88) die Entwicklungen

1 . 2
5 5 —3 cos[0] — v sin[O] cos[O] + O(v*) (4.136)

und

_ _ 1 sn|9" 3
; +2v . Ov) (4.137)



Fiir die Lambertsche Funktion im unteren Ast gilt nach Definition fir
z — 0 die asymptotische Entwicklung

W_, (—i(l—z)) =—1-vV22+... (4.138)

Mit alledem ergibt sich so im Limes v — 0 fiir die Wurfweite die Formel
£w = vsin20] —O02). (4.139)

Dies entspricht aber der parabolischen Theorie der ballistischen Kurve
nach Galilei - Torricelli. Bei maximaler Wurfweite muss der Elevations-
winkel

Oraw = % (v — 0} (4.140)

betragen.

Im allgemeinen Fall des Parameters v = k v3 /g muss die asymptotische
Formel (4.90) fiir die Wurfweite nach © differenziert und Null gesetzt
werden. Die nichttriviale Wurzel fiir den extremalen Winkel ©,, ergibt
sich nach einiger Umrechnung mit (4.87) zu

2v 2v
sm[@,] ~ &P ((1 T 2v sin[O.]) sin[@m]> ; (4.141)

1+

Die Losung dieser transzendenten Gleichung liefert den extremalen Ab-
wurfwinkel in der EULER - LAMBERTSCHEN Néherung, aber jetzt fiir den
ganzen Wertebereich (siehe Fig. (4.22)). Denn asymptotisch gilt mit der
obigen Relation wie in (4.55)

1 1
V2 6
Allerdings sind die so erhaltenen extremalen Elevationswinkel etwas
zu niedrig, wenn man sie mit den exakten Werten vergleicht, wie sie
sich aus einer numerischen Integration ergeben (siche rote Kurve in
Fig. (4.22)). Damit zeigt das alte Problem von TARTAGLIA aus dem
Jahre 1537 unerwartete mathematische Schwierigkeiten, wenn man den
Luftwiderstand berticksichtigen will. Wie schon bei der Reihe (4.55) von
EULER aus dem Jahre 1745 erwahnt, lautet die korrekte asymptotische
Entwicklung im Limes v — 0

sin[0,,] = v+... (¥v—0) (4.142)
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Fig. 4.22: Der optimale Elevationswinkel Oy, als Funktion von 1/pu =k vg/g
fiir mazimale Wurfweite im ebenen Geldnde, wie er sich aus der transzenden-
ten Gleichung (4.141) ergibt (blaue Kurve), welche auf der Lambertschen
Approximation beruht. Zum Vergleich ist auch die exakte Abhdangigkeit dar-
gestellt, wie sie sich aus einer numerischen Integration der ballistischen
Differentialgleichung ergibt (rote Kurve). Diese exakte Abhdingigkeit wird
weiter unten durch die asymptotisch exakte Formel (4.165) gut approzimiert.

1
sin[@p,]=—=-c1v+... (4.143)

V2
in der die Zahl ¢y nicht aus einer Polynomdarstellung, sondern nur mit
einer speziellen Storungstheorie berechnet werden kann. Wir werden
sehen, daf diese Zahl ¢; = (6 — v/2log(1 + /2))/64 sein muss (siehe
4.159).
Fiir unsere Untersuchungen ist es giinstiger, die Fundamentalgleichung
(4.46) anstatt mit (4.116) mit der alternativen dimensionslosen Skalie-

rungen

g
T=—& y=—n (4.144)

in die Form

"€l =2v 1+ 7[¢° n"[¢]. (4.145)




zu transformieren. Die Anfangsbedingungen sind
n[0] = 0; 7'[0] = tan[O]; 7”[0] = — sec[O]?, (4.146)

mit dem dimensionslosen Parameter
(4.147)

Um die Gleichung Im Grenzfall v — 0 zu 16sen, machen wir den Ansatz

nl€] = mol€] +vml€] + v ml€] + ... (4.148)

und versuchen, die einzelnen Funktionen sukzessiv zu berechnen. Die
Losung ohne Luftwiderstand (v = 0) ist ndmlich die Wurfparabel

1
nol€] = tan[O] £ — 3 560[9]2 &2 (4.149)
Um die Funktion 7 [§] zu bestimmen, wird der Ansatz (4.148) in die

obige Differentialgleichung eingesetzt und bis zur ersten Ordnung in v
entwickelt. Fiir 7 [€] ergibt sich auf diese Weise die Differentialgleichung

7' [€] + 2sec[O]? /1 + (tan[O] — £ sec[O]2)2 = 0, (4.150)

welche mit der Anfangsbedingung 7:[0] = 71[0] = 7#7[0] = 0 gelost
werden muss. Striche bedeuten hier Ableitungen nach der Variablen &.
Die Gleichung lésst sich exakt integrieren, doch die analytische Losung
fllt tiber eine Seite. Im Hinblick auf die EULER’sche Losung ist es aber
interessanter, die Korrekturen zur Wurfweite W, zur Gipfelhéhe H und
zur Flugdauer T einer Kanonenkugel in erster oder auch zweiter Ordnung
in v zu kennen. Im ebenen Geldnde muss zunéchst fiir die Wurfweite

10[§w] + vml&w] =0 (4.151)
gelten. Mit dem Ansatz
&w = sin[20] — 14Ol v + ... (4.152)
folgt mit Hilfe von Computeralgebra zundchst der Ausdruck

C1w[O] = — cot[B] ny [sin[20]]. (4.153)



Ausgerechnet ergibt sich

Clw [@]

116 (9 cos[0] — 5cos[30] + 2 cos[O](3

(4.154)
~ 5¢c08[20]) cot[6] In {tan B + 2”) .

In physikalischen Koordinaten berechnet sich also die Wurfweite im
ebenen Gelidnde zu

*ﬁ sin —c ng 2
W= { 26] - c1[0] = % +O(k )} (4.155)

Im Gegensatz zur Polynomentwicklung (4.54) von EULER ist (4.155)
exakt im Sinne der ersten Ordnung v. Welcher Autor in der Geschichte
zur ballistischen Kurve die exakte asymptotische Entwicklung (4.155)
zum erstenmal mit der Winkelfunktion (4.154) aufgestellt hat, ist mir
nicht bekannt. Im Lehrbuch von C. CRANZ ist sie zumindest nicht zu
finden.

Nun bereitet es auch keine grolen Schwierigkeiten, die mazimale Wurf-
weite T, und den dafir optimalen Winkel ©,, in erster Ordnung v
abzuschitzen. Mit (4.155) folgt die maximale Wurfweite W mit dem
Ansatz

O = % — 1o v+ 0P (4.156)
za
vt 1 kvd
W==2(1-=2("vV2+3n(1+v2) 2 +...)), (4.157)
g 16 g
und ) 02
_r_ 2 _ ~U%
Om = 32(3\/5 In(1 4+ v2)) g T (4.158)

Alternativ konnen wir auch fir den extremalen Winkel

1 kvd
— — —(6—+v2mn[1 —C 4 (4159
schreiben. Diese Relation kann nun direkt mit derjemgen von EULER
(4.55) verglichen werden. Bei EULER steht als Vorfaktor von v die Zahl
1/6, doch nach der exakten Funktionalmethode muss der Vorfaktor

sin[©,,] =

o (6 —V2In[1 +V2]) = 0.07427421124. (4.160)



sein. Dies konnte auch durch numerische Simulationen bestétigt werden.
Der wirkliche Zahlenfaktor betriagt also weniger als die Hélfte des Wertes
von EULER aus dem Jahre 1745. Alternativ gilt natiirlich auch

tan[®,,] =1 — 1—16(3f —In[1 +v/2]) kg”g +.... (4.161)

Die obigen Formeln sind natiirlich nur fiir kleine Parameter v brauchbar.
Realistisch sind aber Werte von 1 bis 10. In diesem Fall gilt aber ein sehr
genaues Skalierungsgesetz. Mit einem zunéchst freien ,Fitparameter o
kénnen wir ndmlich fiir die Wurfweite sehr genau

08 1 —1/a
~ (1+w(7\/§+3ln[1+\/§])au) (4.162)

setzen, mit a ~ 1.395. Numerisch gilt also fiir die maximale Schussweite
bei nicht zu groBen v = kv3/g - Werten

9 o\ —0.717
W~ L (1 +1.094 kvo> . (4.163)
g g

Eine dhnliche Formel gilt auch fiir den optimalen Elevationswinkel ©,,.
Hier hat man sehr genau

-1/«
sin[0,,] ~ % (1 + 3712(3\[ —In(1+v?2)) au) , (4.164)

jetzt aber mit a ~ 8.481. Numerisch gilt dann analog

1 k2 —0.118
sin[0,,] ~ 7 (1 +0.891 go) : (4.165)

Die beiden Formeln (4.163) und (4.165) 16sen das entscheidende Problem
der Artillerie des 18. und 19. Jahrhunderts: Ist der ballistische Koef-
fizient k einer Kanonenkugel bekannt, so liefert (4.163) bei bekannter
Entfernung die minimal notwendige Geschwindigkeit vy oder die entspre-
chende minimal notwendige Pulvermasse mp, um das entfernte Ziel zu
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Fig. 4.23: Die mazximale Wurfweite in Einheiten von v%/g als Funktion des
Parameters v =k vg/g. Die durch numerische Integration gewonnenen Werte
unterscheiden sich praktisch nicht von der semianalytischen Formel (4.163).

45

) \\

Oml°]
&

N
a

0 5 10 15 20
v

Fig. 4.24: Der optimale Abschusswinkel ©y, fur mazimale Wurfweite als
Funktion des Parameters v = kvg/g. Die durch numerische Integration ge-
wonnenen Werte unterscheiden sich praktisch nicht von der semianalytischen
Formel (4.165).

erreichen'®. Hauptproblem war wohl einerseits die Rotation der Kanonen-

13Im 18. Jahrhundert wurde in etwa vo ~ \/mp log(a/b) gerechnet, wobei in a/b die
Rohrliange (Kaliber) einging . Siehe Struensee: Anfangsgriinde der Artillerie, Seite



kugel (Magnuseffekt; gezogene Rohre gab es erst ab etwa 1860) und die
Qualitdt des Pulvers - nicht immer lieferte gleiche Pulvermasse mp auch
gleiche Abschussgeschwindigkeiten vy (siehe [67]). War das vg(mp) dann
bekannt, kénnte man mit (4.165) den erforderlichen Elevationswinkel
O,, des Rohres berechnen. Im Prinzip entspricht dies dem Vorgehen
von vorgefertigten Schusstafeln. Die Formeln (4.163) und (4.165) waren
allerdings in dieser Form im 18. wie im 19. Jahrhundert nicht bekannt.

Doch zuriick zur ballistischen Kurve. In d&hnlicher Weise lésst sich auch
die Gipfelh6he und deren Position in der Bahn bis zur ersten Ordnung in
v berechnen. Mit dem Ansatz

1
¢y = §sin[2®] —c®lv+... (4.166)
folgt wiederum mit Hilfe von Computeralgebra zunéchst der Ausdruck
1
c11[0] = cos*[0] ) [2 sin[QG]} . (4.167)
oder explizit
g 4 3
T = 29 {sin[Q@] —3¥ cos[O] (1 — cos[O])° + .. } . (4.168)

Die eigentliche Gipfelhéhe yiy = H der Bahn (Vertex) ergibt sich rein
formal zu

H = % {sin[@]2 +2vm B sin[z@}] + O(zﬂ)} : (4.169)

Auch die in erster Ordnung v korrigierte Flugzeit T' kann durch die
Funktion 7; und ihre Ableitung ausgedriickt werden. Auf eine explizite
Darstellung verzichten wir hier, bemerken aber noch, daf3 fiir beliebige
Elevationswinkel 0 < © < 7/2 zwischen der Gipfelhohe und der Flugzeit
die Relation

H= %gTQ {1+ 0O[]*} (4.170)

gilt. Denn der Zahlenfaktor proportional v verschwindet geméaf

8m [% sin[2@]] — 4 [sin[20)]] + sin[20] 7] [sin[20]] = 0.  (4.171)

313, 1760 ([54])



Den Korrekturfaktor proportional »? kénnte man analog durch eine
wesentlich aufwendigere Rechnung ableiten.

4.10 Asymptotische Zeitreihen

Bei Reihenentwicklungen nach der Zeit kann man entweder an analytische
Approximationen fiir kleine Zeiten ¢ — 0 nach dem Abwurf oder an
»globale“ asymptotische Entwicklungen fir ¢ — oo denken. Die erste
Art dieser Entwicklung ist sicherlich eng an die Stérungstheorie fiir
kleine v = kv2/g gebunden. Zur besseren Veranschaulichung werden wir
zunéchst einen Spezialfall der ballistischen Kurve exakt 16sen, ndmlich
fiir den Elevationswinkel © = —m /2.

Im Falle © = —7r/2 wird eine Kanonenkugel ,senkrecht“ nach unten
abgeschossen. Die entsprechende Differentialgleichung fiir die Geschwin-
digkeitskomponente v[t] = y'[t] lautet dann

V[t — ko[t +g=0 (4.172)

mit der Anfangsbedingung v[0] = —vg (negatives Vorzeichen, weil nach
yunten“ geschossen wird). Die Gleichung lésst sich exakt integrieren und
man erhélt

v[t] = \/g tanh [\/@t + atanh [\/EUOH . (4.173)

Anhand dieser Losung sieht man sofort, dass im Falle t — oo die Grenz-
geschwindigkeit /g/k erreicht wird. Zweckméfig ist die obige Losung
nur fir vg < y/g/k, in welchem Falle die Funktion atanh|z] reelle Werte
liefert. Fiir den allgemeinen Fall ist es giinstiger, die Formel durch eine
Transformation in die Gestalt

oft] = _\/E vo cosh[vEgt] + /% sinh[\/Egt]
k vo sinh[vEgt] + /% cosh[vEgt]

zu bringen. Diese Formel kann leichter fir alle Geschwindigkeitsverhalt-
nisse ausgewertet werden.

Fiir kleine Zeiten ¢t kann man die obige Formel in eine Taylorreihe
nach k entwickeln. Dies entspricht einer ,Stérungstheorie” nach dem

(4.174)



Parameter k. Man erhélt sofort
2 2 1 3
ot = —vo—gt+k (it +vogt®+ 59t ) +... (4175

Diese Entwicklung beschreibt sehr schon, wie die Fallbewegung durch den
Luftwiderstand in den ersten ,,Sekunden® modifiziert oder abgebremst
wird. Sie zeigt aber auch, dass im Falle k v3 = g, bei der eine gleichférmige
Fallbewegung mit der Geschwindigkeit vy einsetzt, diese nur ,,in erster
Néherung® fiir kleine Zeiten beschrieben wird.

Diesen Nachteil sollte eine asymptotische Entwicklung fiir grofe Zeiten
t — oo nicht aufweisen. Eine asymptotische Formel ergibt sich sofort aus
(4.174) in der Form

[y V=1
v[t]\/; <1+2(ﬁ+1)62m_(ﬁ_1)> (4.176)

oder entwickelt

oft] = \/><HQZ(WV+D 62"\/@). (4.177)

Bemerkenswert ist aber hier, dass diese Funktionsreihe fiir alle Zeiten
t giiltig und konvergent ist. Durch Integration erhilt man die Weg-

Zeitfunktionsreihe
2 g
In(———)—/2¢
! (Hﬁ) \/; "

o -1 n _—2nykgt
3 (ﬁ 1) ¢ (4.178)
—_ v+ n

flir einen Senkrechtschul nach unten.

Diese Ergebnisse legen es nahe, auch fiir die allgemeine ballistische
Bewegung eine Reihenentwicklung nach der Zeitfunktion eVt zu ver-
suchen. Dazu fithren wir also anstatt der Realzeit ¢ eine Pseudozeit -
Variable ¢ geméfl der Gleichung

ylt] =

=

= e VRt — -7 4.179
¢



ein. { = 1 bedeutet dann den Startpunkt, ( = 0 den unendlich fernen
Zeitpunkt ¢ — oo. Auflerdem gilt

—/bgdt = % (4.180)

Die gekoppelten Bewegungsgleichungen des Geschwindigkeitsvektors lau-

ten dann
dvg
(v—\/7,/112+v2v$—0 (4.181)
d
UU \/7,/1)24—112% \/7—0 (4.182)

da die asymptotische Geschwindigkeit der ballistischen Flugbahn +/g/k
ist, erhdlt man mit der Skalierung

g g
Vs =\ Ve vy =4[ 5 v (4.183)

die dimensionslosen gekoppelten Gleichungen

d
gdig —\JoE+uZve =0, (4.184)
C%—\/vg—&—v%vn—l:& (4.185)

Die Losungen dieser Gleichungen nach ¢ kann man in der asymptotischen
Form

:AC+éA[A2—8B+2A21n(C)] g3+%A [34* —16 A> B
+256 k% + 4 (A" —32 4% B) In(¢) + 16 A* In(¢)?] ¢° +

(4.186)

und
2
t=-142[B- g (@] ¢ 2B {42 ¢

+ 512

3
Q(B_iAz 1n(<)> ~ Lot oapyea? mo)] ¢t

(4.187)
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Fig. 4.25: Das asymptotische Verhalten des Geschwindigkeitsvektors bei einer
ballistischen Kurve itm Falle v =1 und © = 35°, normiert auf die Grenz-
geschwindigkeit \/g/k. Die untere horizontale hellblaue Gerade zeigt, dass
sehr nahe vz [t] sich wie exp(—+/k gt) verhdlt, wihrend die obere dunkelblaue
Gerade die Proportionalitit vy[t]++/g/k o< +t exp(—2vk gt) aufweist. Diese
Entdeckung war fir den Autor Grund genug, eine asymptotische Theorie der
ballistischen Kurve nach den Potenzen der Zeitfunktionen exp(—kgt) zu

entwickeln.

schreiben. Die Groflen A und k sind zwei asymptotische Integrationskon-
stanten der gekoppelten Differentialgleichungen (4.184) und (4.185). Sie
hiangen mit dem Hodographen der ballistischen Kurve (4.102) durch die

bemerkenswerte Beziehung

1 4B
+— +In

Co="5t

(

A

2

)

(4.188)

zusammen. Der Wert der Konstanten Cy wird ja bekanntlich durch
die Anfangsbedingungen festgelegt. Wegen ¢ = e~ " lassen sich aus den
Reihenentwicklungen sofort folgende asymptotische Beziehungen ableiten

lim e”ve = A,

T —00

(4.189)
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Fig. 4.26: Der asymptotische Koeffizient A(v, ©) als Funktion des Elevati-
onswinkels © fir die Parameterwerte v =1,4,9,16. Werte durch numerische
Integration des Pfadintegrals abgeleitet.
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Fig. 4.27: Der asymptotische Koeffizient B(v,®) als Funktion des Elevati-
onswinkels © fiir die Parameterwerte v =1/4,1,4,9. Werte auch hier durch
numerische Integration abgeleitet.

1
lim €?7 (v,(7) +1)=2B+ 3 AT, (4.190)
T — 00

Die Giiltigkeit dieser Relationen konnte durch numerische Integration sehr
schon bestétigt werden (siehe Fig. 4.25). Die Darstellung der Konstanten
A und k bereitet aber fiir den allgemeinen Fall Schwierigkeiten. Im



Spezialfall © = —7/2 ergibt sich aber wie oben

1-Vv, _ _
B:1+ﬁ, A=0. {©=-7/2} (4.191)

Wir bemerken noch, dafl

1;5 _ o—2atanh(yv) (4.192)
1+v

gilt. Diese Relation wird dann interessant, wenn wir den asymptotischen
Fall fiir den Senkrechtschufl ©® = +m/2 betrachten. In diesem Fall setzt
sich der Zeitablauf aus der Aufstiegszeit 77 und der dann folgenden
Zeit im freien Fall mit der Anfangsgeschwindigkeit Null zusammen. Wir
werden spéter noch zeigen, daf fiir die Aufstiegszeit zum Gipfelpunkt die
Formel

T = arctan (v/v) (4.193)

1
vk
gilt (siehe (4.201)). Wir benutzen nun die Formel (4.177), setzen in ihr
v = 0, machen dann aber die Zeittransformation ¢t — ¢t — 7;. In der
asymptotischen Formel ergeben sich dann fiir die Konstanten A und &
im Spezialfall des Senkrechtsschusses zu

B=eructan(Vv). A —0. {©=+n/2} (4.194)

Dabei gilt mit der imaginiren Einheit 1> = —1 die bemerkenswerte
mathematische Identitét

1-— ’L\/; — e2 arctan(\/lj). (4195)
1+20/v

Dieser Ausdruck fiir den Parameter k gilt nur asymptotisch in der Zeit,
also nur fir ¢ > T7.

Fiir beliebige Zwischenwinkel © ist es moglich, eine Darstellung durch
ein Pfadintegral im Geschwindigkeitsraum zu gewinnen. Dazu erinnern
wir uns an die exakte Formel (4.17) und vergleichen sie mit (4.189). Dann
muss gelten

A(v,0) = Jim Vv cos[O] exp (\/@t - ks[t]) (4.196)



oder

A(r,0) = /7 cos|O] exp (/Ooo (1= v(7)]) m) NIRRT

Der Parameter B(v,©) kann dann mit dem Hodographen ebenfalls als
Pfadintegral dargestellt werden. In den Figuren (4.26) und (4.27) sind
diese asymptotischen Parameter als Funktion des Elevationswinkels fiir
einige Werte von v bildlich dargestellt.

4.11 Der senkrechte Schuss

Die Theorie des Senkrechtsschusses hat schon L. EULER in seinem Werk
iiber Artillerie von 1745 behandelt. Die Kanonenkugel wird dabei senk-
recht — wie eine Rakete — entlang des gravitativen Lotes in die Luft
abgeschossen. Das Ganze geschieht natiirlich nur aus wissenschaftlichem
Interesse. Fiir diesen Fall vereinfachen sich die Differentialgleichungen
erheblich und man kann mit den elementaren analytischen Funktionen
die raum - zeitliche Bewegung exakt integrieren. JOHANN BERNOULLI
hat offensichtlich solche ballistischen Experimente in Petersburg um 1735
durchgefiihrt und beobachtet, daf3 seine Kanonenkugel nach T' = 34
Sekunden dicht am Abschussort wieder aufschlug. Macht man diesen
Senkrechtschufl heute mit einem G3 Sturmgewehr, so schldgt die Patrone
nach etwa T = 47 Sekunden wieder auf'*.

Die Bewegungsgleichungen miissen nun in zwei Abschnitte aufgeteilt
werden: Den aufsteigenden Ast und den absteigenden Ast. Die beiden
unterschiedlichen Differentialgleichungen lauten jetzt

b = —kvi-g aufsteigender Ast (4.198)
v = +kvi-g absteigender Ast (4.199)

Im ersten Fall wirken Luftreibung und Schwerebeschleunigung in die
gleiche Richtung, im zweiten Fall in entgegengesetzte Richtungen.

14Dje zuriickkommende Patrone in einem solchen SenkrechtschuB hat dabei eine
Geschwindigkeit von etwa 150m/s.



Aufsteigender Ast: Mit der Anfangsbedingung v(0) = v lautet die
Losung der Gleichung (4.198)

= gan arcan& —
v[t]—\/;t [ t [\/ﬁ] Vakt

Die Zeitdauer T; bis zum Gipfelpunkt ist dann durch v(77) = 0 oder

(4.200)

—Larc an 1}70
T = = act [\/g/ik] (4.201)

gegeben. Fiir die Hohe h[t] folgt dann unmittelbar durch Integration und
h(0)=0

B cos [arctan [\/ﬁ} - \/gkt}

hit] = 1 In (4.202)
cos {arctan [\/1";/7”
Die Hohe H = h(T1) des Gipfelpunktes ergibt sich zu
1
H=—1In [COS [\/gk Tlﬂ (4.203)
k
oder durch Umkehrung die wichtige Beziehung
T = L arccos [e_k "], (4.204)
vk

Setzt man andererseits in (4.203) fiir 77 die Formel (4.201) ein, so folgt
wiederum mit pu = g/(kv3) die ezakte Formel fiir die Gipfelhhe
kvg

1
H=—In|l14+—]. 4.2
5% n{ + g} (4.205)

Eine ganz andere Formel gilt jetzt aber fiir den Riickfall auf die Erdober-
flache.



Absteigender Ast: Definiert man die nach ,unten® gerichtete Geschwin-
digkeit negativ, so ergibt eine erste Integration von (4.199) mit der
Anfangsbedingung v(0) = 0 die Losung

olt] = \/i tanh [\/ng t] (4.206)

Eine weitere Integration ergibt mit der Anfangsbedingung h(0) = H die
Fallhohe als Funktion der Zeit zu

ht] = H — % In [cosh [\/ﬁ: t” . (4.207)

Nach der Fallzeit T, schlidgt die Kanonenkugel wieder auf dem Boden
auf, wobei gilt

H= % In [cosh [\/ch TQ}: (4.208)

oder durch Umkehrung

1
T=— h [eF 7] 4.209
5 \/ﬁarccos [e" ] ( )

Die Formeln fiir 77 und 75 héngen durch die Transformation des ballis-
tischen Koeffizienten k — —k miteinander zusammen. Dies kann man
auch aus den entsprechenden Differentialgleichungen sehen. Es hétte also
eigentlich geniigt, nur den aufsteigenden Ast zu betrachten und fiir den
absteigenden k durch —k zu ersetzen. Dies hat auch schon EULER 1745
gesehen und ausgenutzt.

Die gesamte Flugzeit T' = T + T, betragt somit

T= L (arccos [e*k H} + arccosh [ek H]) . (4.210)

Vok

Bei ballistischen Versuchen zu Beginn des 18. Jahrhunderts konnte man
diese Flugzeit eines Senkrechtsschusses recht genau messen, im Gegensatz
zur Gipfelhohe der Kugel. So nahm der erst 20jdhrige L. EULER an
Versuchen teil, die 1727 in Sankt Petersburg unter Leitung von General
GUNTHER und dem damals 27jéhrigen D. BERNOULLI durchgefiihrt



wurden. Ergebnisse dieser Versuche veroffentlichte D. BERNOULLI dann
in seiner Hydrodynamica 1748. Die damalige Flugzeit der verwendeten
kleinen Kanonenkugeln war etwa T ~ 34 Sekunden. Es liegt daher der
Gedanke nahe, die obige Beziehung nach der Grofle H umzukehren. Mit
Hilfe von Computeralgebra erhélt man mit der dimensionslosen Zahl

1
A=—kgT?
3 g
die interessante Reihe
1 A2 A4
H=_-gT?(1- -
g7 ( 52.3.5  22.32.5 (4.211)
67 A6 n 1567 \8 _
25.32.52.7.13  26.34.53.13.17

die in dhnlicher Form zum erstenmal L.. EULER 1745 fiir ein modifiziertes
Widerstandsgesetz aufgeschrieben hat. Wie man sieht, gilt trotz Luftwi-
derstand recht genau zwischen der Gipfelhdhe und der Flugzeit die aus
der parabolischen Theorie bekannte Beziehung 8 H = gT2. Alle diese
Dinge waren auch in den preuflischen Artillerieschulen gegen Ende des
19. Jahrhunderts bekannt: So schreibt W. HEYDENREICH in seinem Buch
von 1898 in Abteilung II, Seite 76 ([20]):

Bemerkenswert ist, daf} die Formel H = gT?/8 auch mit
grofier Anndherung fir die Flugbahn im lufterfillten Raum gilt,
so dafl man nach FEinfihrung des Zahlenwertes von g = 9.81,
sobald die Flugzeit T (in Sekunden) gemessen ist, man in
H =1.2T? die anndhernde Steighdhe des Geschosses erhdlt.

Um ein konkretes Beispiel vor Augen zu haben, nehmen wir fiir die
Patrone eines G3 - Gewehres bei einem Senkrechtschufl eine Flugzeit von
Tr = 47[s] an. Mit g = 9.81 [m/s?] ergibt sich so zunéchst nach (4.211)
fiir die Steighohe ohne Korrekturterm

H ~ 2709 m (4.212)

Um die Korrektur durch den Luftwiderstand zu berechnen, muss die
inverse Linge k abgeschéitzt werden. Fiir sie gilt nach (4.48) die Formel

) T D? OLuft
8 Mpat

k& (M (4.213)
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Fig. 4.28: Die erreichte Gipfelhohe H und die Flugzeit T' beim Senkrecht-
schufl erfullt trotz des Luftwiderstands sehr gut die klassische Beziehung
H = gT?/8. Berechnet wurde der Kurvenverlauf mit der Umkehrung der
Formel (4.210).

Mit ¢,, &~ 0.15, D = 0.00762 [m], orust = 1.21[kg/m?] und mpe =
0.0106 [kg] ergibt sich so

k=3.90-10"*[m"Y],  /g/k=158[m/s]. (4.214)

Damit folgt A ~ 1 und mit Korrekturterm nach (4.211) fiir die korrigierte
Steighthe
H ~ 2651m (4.215)

Die erreichte Gipfelhohe wird also gegentiber (4.212) um 58m nach un-
ten korrigiert. Durch Radarmessungen wird diese Hohe auch bestétigt,
obwohl die Patrone sich etwa 2 Sekunden im supersonischen Bereich
aufhélt. Der Unterschied zur klassischen parabolischen Theorie beziiglich
Steighthe und Flugzeit ist also tatsédchlich gering. Zum Abschluss sollen
noch zwei Formeln fiir die Anfangsgeschwindigkeit vy und die Aufprall-
geschwindigkeit vy angegeben werden. Sie folgen leicht aus den obigen
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Fig. 4.29: Die erreichte Hiohe einer 7.62 mm Patrone beim Senkrechtschuf
eines G38 Gewehres als Funktion der Zeit. Nach etwa 19.5 sec wird die
Gipfelhohe von etwa 2600 Metern erreicht. Dieser Punkt stellt eine Art

Singularitdt dar, da die Formeln fir das Weg - Zeit Gesetz vor und nach dem
Gipfelpunkt unterschiedlich sind.

Gleichungen und lauten

vy = \/g\/ e2kH 1, (4.216)
vp = \/g\/ 1—e2kH, (4.217)

Beide héngen durch die Transformation & — —k zusammen. Mit den
obigen Daten ergibt sich k£ H ~ 1.04 und so

vo ~ 417 m/s, vy~ 148 m/s. (4.218)

Die wahre Abschussgeschwindigkeit diirfte aber etwas hoher sein, denn sie
liegt im supersonischen Bereich, wo der c¢,, Wert etwas hoher ist wie im



subsonischen Bereich. Man kann von etwa 600m/s ausgehen. Siehe auch
Figur (4.29). Auch hier erkennt man eine gewisse ,,Symmetriebrechung*
zwischen dem aufsteigenden und dem absteigenden Ast.

Bevor wir im néchsten Kapitel den freien Fall aus sehr groler Hoéhe ge-
nauer betrachten, kdnnen wir zunédchst die Formel fiir die Gesamtflugzeit
(4.210) mathematisch direkter herleiten. Hierzu betrachten wir nur den
absteigen Ast mit der Differentialgleichung (4.199). Dort betrachten wir
die Geschwindigkeit v — v[h] als Funktion der Hohe h. Wegen

d d

folgt sofort

d
v d—z =kvi—yg {absteigender Ast} (4.220)

Diese Differentialgleichung kénnen wir mit der Anfangsbedingung im
Gipfelpunkt v[H] = 0 16sen und erhalten sofort

v[h] = —\/g V1 —e2k(h—H), (4.221)

Fiir den aufsteigenden Ast brauch wir hier nur die Transformation & —
—Fk vornehmen. Die Kenntnis der Abschussgeschwindigkeit vy ist dann
automativ in der Formel enthalten.

Die Fallzeit T, erhélt man einfach aufgrund der elementaren Beziehung

dh =wvdt.

Damit erhélt man das Integral

Ty = k/Hdh (4.222)
>Ny Jo Vi—ezrn '

Auswerten fiuhrt zu dem alternativen Resultat

arctanh [\/1 — e*zkH] . (4.223)

1
Ty =
2 /79]{:

Die beiden Formeln (4.209) und (4.223) sind zueinander dquivalent. Fiir
den aufsteigenden Ast braucht man nur k& — —k zu setzen. Fur die



gesamte Flugzeit folgt somit alternativ

T= ﬁ {arctan [\/ e2kH 1} + arctanh [\/1 - e*QkH} }

Dies entspricht letzendlich einer analytischen Fortsetzung. Die eigent-
lich Abschussgeschwindigkeit vy am Boden kénnen wir berechnen, aber
brauchen wir nicht zu wissen.

4.12 Senkrechter Schuss in groBe Hohen

Im vorherigen Kapitel wurde die Bewegung beim senkrechten Schuss unter
der Voraussetzung konstanter Luftdichte betrachtet. Dies ist bei einer
Gipfelhohe von maximal 2000 Metern noch eine gute Naherung, wird aber
bei sehr groflen Hohen mehr und mehr unrealistisch. In etwa 5500 Metern
Hoéhe hat sich die Luftdichte im Mittel schon halbiert. Dieser Effekt darf
also nicht mehr vernachléssigt werden. So konnte im Zweiten Weltkrieg
die 8.8cm - FlaK41 oder 12.8cm - FlaK40 Flugabwehrkanonen bei
einer Miindungsgeschwindigkeit von vg = 820 — 1000m/s eine maximale
Schusshéhe von etwa H = 10400 — 14700 m erreichen. Wichtig war hier
die Berechnung der Flugzeit fiir eine gemessene Hohe, um daraus den
Vorhalt der Kanone und die Einstellung des Zeitziinders abzuleiten.

Die gegeniiber (4.198) und (4.199) erweiterten Gleichungen einer senk-
rechten Aufwiérts - oder Abwértsbewegung mit abnehmenden Luftdichte
lauten fiir eine isotherme Standardatmosphére (v = dh/dt)

v = —kexp[-h/Hs|v?>—g (Aufsteigen) (4.224)
v = +kexp[-h/Hg]v?> —g (Absteigen) (4.225)

Beim Aufstieg ist hier v positiv, beim Abstieg ist v negativ. Der bal-
listische Koeffizient & hidngt normalerweise von der Machzahl und der
Reynoldszahl ab. Im folgenden werden wir ihn als Konstante ansehen,
was im hypersonischen Bereich keine schlechte Annahme ist. Die Luft-
dichte folgt in unserem Modell einer einfachen isothermen barometrischen
Hdéhenformel nach Laplace mit der Skalenhéhe Hg. Ein typischer Wert
fiir die Skalenhohe der Erdatmosphére ist Hg a2 8000[m]. Die Gravitati-
onsbeschleunigung ¢ soll in unserem idealisierten Modell konstant sein.
Wendet man die Transformation

. dv dv dh _ dv



an, so lautet die Gleichung fiir den absteigenden Ast (auf diesen kénnen
wir uns hier beschrénken)
dv
V—— =
dh
Es scheint giinstig, die Irrationalitdt der e-Funktion durch Einfiithrung
einer neuen Hohenvariablen

ke h/Hs 2 _ g (4.227)

d dh
n = e/ Hs. ;77 = (4.228)

zu eliminieren. Die Differentialgleichung fiir den absteigenden Ast nimmt
dann die Gestalt d I
v fkHgv? — 175 — (4.229)
dn n
an. Thre Losung mit der Anfangsbedingung v[ng] = 0 lautet fiir positiv
definierte Abwiartsgeschwindigkeit

vl = /29 Hs e *Hs" \/Ei[2k Hg ) — Ei[2k Hgno]  (4.230)

mit
n=e s, no = e/ Hs, (4.231)

Die Funktion Ei[z] ist durch den Cauchy - Hauptwert des Integrals
x et
Eilz] = / < g (4.232)
oo b

definiert. Die so gewonnene Formel kann sofort auch fiir den aufsteigenden
Ast durch k£ — —k abgeleitet werden. So ergeben sich fiir die Abgangsge-
schwindigkeit vy und die Aufprallgeschwindigkeit vy die Formeln

vo = /29 Hg " s \/Ei[-2k Hs] — Ei[-2k Hg 10] (4.233)
vr = \/2gHse " s \/Ei[2k Hg] — Ei[2k Hs 1. (4.234)

Nehmen wir als Zahlenbeispiel Hg = 8000 m, fiir den aerodynamischen
Koeffizienten k& = 10=* /m von schweren Geschossen. Dann erhiilt man
mit der obigen Formel fiir die zu erreichende Gipfelhhe von H = 14000
m eine notwendige Miindungsgeschwindigkeit vg am Boden von etwa

vg ~ 825 m/s (4.235)



Die eigentliche Flugzeit bis zur Gipfelhéhe H und zuriick zum Boden
ergibt sich dann zu

/HS/ kHS”dn n
n/Ei[2k Hgn] — Ei[2k Hg no]

H e FHsng
,/ S/ il , (4.236)
n/Ei[-2k Hs n] — Ei[-2k Hs 1]

wobei

To = % (4.237)

die Flugzeit ohne Luftwiderstand bedeutet. Die Auswertung des Integrals
kann nur noch numerisch erfolgen. Es zeigt sich, dass mit Luftwiderstand
und k < 1073 das Verhéltnis T/Ty weniger als 1% fiber 1 liegt. Fiir die
Flugzeit kann man also den Luftwiderstand praktisch vernachlassigen.

4.13 Der freie Fall aus groBer Hohe

Wihrend allgemeine Situationen nur noch numerisch gerechnet werden
konnen, ldsst sich der Spezialfall des freien Falles aus grofer Hohe (z.B.
Stratosphdre) nach den Ergebnissen des vorhergehenden Kapitels noch
relativ einfach analytisch berechnen. Zwei Fragen sind hier besonders
interessant:

o a) In welcher Hohe erreicht der fallende Korper maximale Geschwin-
digkeit?

e b) In welcher Hohe ist die Abbremsung durch die Luft maximal?

Diese Fragen sollen hier kurz diskutiert werden.
Fiir den freien Fall aus sehr gréfer Hohe'® senkrecht zum Boden ist
jetzt die Gleichung (6.91) relevant.

15 Angeregt wurde diese Untersuchung durch das Projekt RED BULL STRATOS
vom 14.10.2012



Mit der so gewonnenen Formel lassen sich die zwei zu Beginn gestellten
Fragen vollsténdig beantworten.

Die maximale Geschwindigkeit wird zu dem Zeitpunkt erreicht, wenn
die effektive Beschleunigung ¢ null wird. Dies fithrt mit (6.91) zu der
Bedingung

ki v[nm)® = g (4.238)

In den Abbildungen (4.30) und (4.31) kann man im Vergleich sehen, wie
der Punkt maximaler Geschwindigkeit mit der Linie a/g = 1 zusammen-
fallt. Wenn der fallende Koérper die Maximalgeschwindigkeit erreicht hat,

vl\/glk

z = h/Hg

Fig. 4.30: Der Verlauf der Fallgeschwindigkeit in Einheiten von \/g/k als
Funktion der Hohe z = h/Hg fiir 10 anfingliche Fallhéhen H in Einheiten
von Hg. Die Kennzahl o = 2k Hg hat hier den Wert 64. Mazimal wird die
Geschwindigkeit dort, wo die Bremsbeschleunigung den Wert g erreicht.

wird er durch den Luftwiderstand genau mit der Erdbeschleunigung g
abgebremst. Doch dies ist nicht der Punkt maximaler Abbremsung. Erst
etwas tiefer in der immer dichter werdenden Atmosphére erfahrt der Kor-
per maximale Abbremsung. Man erhélt das tiberraschende Resultat, dass
im Grenzfall sehr grofler Fallhéhen der Punkt maximaler Abbremsung
durch die asymptotische Formel

H,=Hg In(2k Hg) — ... (4.239)




10

z = h/Hg

Fig. 4.831: Der Verlauf der Bremsbeschleunigung in Einheiten von g als
Funktion der Hohe z = h/Hg fiir 10 anfingliche Fallhéhen H in Einheiten
von Hg. Die Kennzahl o = 2k Hg hat hier wieder den Wert 64. Auf der
horizontalen Linie a/g = 1 schneiden die Kurven den Punkt mazimaler
Geschwindigkeit.

gegeben ist. Diese Beziehung wurde so zum erstenmal von J.H. ALLEN
(1910-1977) und A. EGGERS 1953 verdffentlicht (,Blunt-Body* (,,Stump-
fer Korper®); [1]).

Die so gewonnenen Ergebnisse wollen wir an den konkreten Daten
des Rekordsprunges von F. Baumgartner aus dem Jahre 2012 aus fast
40 km Hohe testen. Das Red Bull Stratos Team hat leider nur finf
Datenpunkte der Fallkurve veroffentlicht, die in folgender Tabelle (4.3)
zusammengefasst sind: Mit der Erdbeschleunigung g = 9.8065m /s>
ergeben sich die wahrscheinlichsten Parameter zu

.
o k

Hs = 6390+ 530 [m]

39+ 7 [m/s]

Obwohl die Varianz dieser Parameter recht grof ist, stellt die erhaltene
Kurve die Datenpunkte relativ gut dar (siehe 4.32). Rechnet man mit
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Fig. 4.32: Die Fallgeschwindigkeit als Funktion der Hohe beim Fallschirm-
sprung von F. BAUMGARTNER im Red Bull Stratos Projekt in Roswell, New
Mezico, am 14.10.2012. Die fiinf verdffentlichten Datenpunkte des Rekord-
sprunges mit den entsprechenden Zeiten lassen sich recht gut an die theoreti-
sche Funktion (6.91) anpassen. Der rote Punkt bezeichnet die Hohe mazimaler
Luftbremsung, bei der beim freien Fall von Baumgartner auch die ,flat - spin“
Instabilitdt einsetzte. Die farbigen Bereiche kennzeichnen die 60, 70, 80 und
90 % Vertrauensbereiche der Kurvenanpassung.

t[s] Hm] | vim/s] | Ymoder[m/s] | tmodet[s]
0 | 38969.4 0.0 0.0 0.0
34 | 33446.0 | 309.7 306.7 34.2
50 | 27833.0 377.1 360.4 50.5
64 | 22966.7 | 289.7 301.8 64.9
180 | 7619.3 79.2 72.7 179.6
260 | 2567.0 53.2 48.4 265.5

Tab. 4.3: Die bekannten Eckdaten des freien Falles von F. Baumgartner im
Red Bull Stratos Team aus etwa 40km Héhe vom 14.10.2012. Zum Vergleich
zeigen die beiden letzten Spalten die Best-Fit Daten des Modelles.

der wahrscheinlichsten Funktion die Zeiten nach der exakten Formel

H
d 2H 1 H
TF:/ Y o g<1+2kHSS+...) (4.240)
0

vyl H



aus, so ergeben sich anstatt der Zeiten in der Tabelle die Zahlen 0, 34.2,
50.5, 64.9, 179.6 und 265.5 [s]. Die analytische Naherung zeigt, dass die
Fallzeiten mit Luftwiderstand natiirlich immer grofler als im Vakuum
sind. Auch die Zeitmarken stimmen relativ genau mit den offiziellen
Angaben iiberein. Das quadratische Luftwiderstandsgesetz und/oder die
exponentielle Abnahme der Luftdichte mit der Hohe scheinen in dem
betrachteten Bereich geniigend genau erfiillt zu sein. Die kleinen Abwei-
chungen der Daten von der theoretischen Kurve deuten allerdings auf
plétzliche unstetige Dichtespriinge der Luftdichte in der Stratosphére hin.
Eine andere Moglichkeit ist natiirlich die Abhéngigkeit des Parameters k
von der Machzahl und der Reynoldszahl, die sich in diesen Hohen auch
sprunghaft dndern kann.

Die stéarkste Luftabbremsung geschah nach dem Modell in einer Héhe
von etwa 22121[m] (t = 67 [s]) und betrug 1.64g. Man spiirt hier so-
mit das 1.6 - fache seines Eigengewichtes. Kurz vor diesem kritischen
Punkt setzte dann die ,flat spin“ Instabilitdt ein, die wohl durch den
transsonischen Punkt ausgelost wurde und etwa 13[s] dauerte und bei
t = 77[s] durch Handbewegungen von F. BAUMGARTNER wieder abge-
dédmpft werden konnte (siehe (4.32)). Am 24. Oktober 2014 machte ALAN
EUSTACEER im Alter von 57 Jahren mit einem Fallschirm einen Strato-
sphéirensprung aus 41.419 Metern Hohe und stellte so den Hohenrekord
von F. BAUMGARTNER ein.

Abschliefilend noch die Fallzeiten fiir einen Korper (Menschen) mit der
Grenzgeschwindigkeit v, = 50 m/s und Hg = 8000 m. Aus 10000 m
Hohe erhélt man so eine Fallzeit von etwa 153 s, aus 20000 m Hohe 234
s, aus 30000 m Hohe 279 s und schliellich aus 40000 m Hohe ungefihr
306 Sekunden.

4.14 Die Superkanone

Wéhrend der Entwicklung der Artillerie im 19ten Jahrhundert entstand
auch der Trend, immer groflere und leistungsstéarkere Kanonen zu kon-
struieren. Dies spiegelt sich auch im Roman Autour de la lune von JULES
VERNE aus dem Jahre 1870 wider. In dieser visiondren Geschichte werden
drei Menschen und zwei Hunde mit einer Kanone (Kolumbiade) um den
Mond herum wieder zur Erde zuriick geschossen. Im amerikanischen
Biirgerkrieg 1865 war zuvor die Rodmankanone zum Einsatz gekommen.



Schon 1855 hatten die amerikanischen Ingenieure A. S. LyMAN und J. R.
HASKELL sogenannte Mehrkammergeschiitze entwickelt, um sehr hohe
Abschussgeschwindigkeiten zu erreichen. Der franzosische Erfinder L.
G. PERREAUX stellte auf der Weltausstellung 1878 ein funktionsfahiges
Mehrkammergeschiitz vor. Als Mitte des Ersten Weltkrieges unter dem
Ingenieur F. RAUSENBERGER von der Firma Krupp drei sogenannte Paris
- Geschiitze mit {iberlangem Rohr (38 m) gebaut wurden, um Reichweiten
von iiber 100 km zu erlangen'®, stellte man — entgegen den Ergebnissen
von TARTAGLIA und EULER — fest, dass der maximale Schusswinkel
bei tiber 50 Grad lag. Bei Abgangsgeschwindigkeiten von tiber 1000m/s
war wohl die klassische ballistische Theorie nicht mehr ausreichend. Der
Hauptgrund war schnell gefunden: Man hatte die Abnahme der Luftdichte
mit der Hohe génzlich unterschitzt. Auch musste jetzt die Rotation der
Erde beriicksichtigt werden.

Um dieses Ergebnis zu verstehen, miissen wir in der Schliisselgleichung
(4.46) die Hohenabhéngigkeit des ballistischen Koeffizienten beriicksichti-
gen. Bei Annahme einer einfachen barometrischen Hohenformel mit der
Skala Hg fiir den Dichteverlauf erhalten wir die erweiterte Modellglei-
chung

= ke Hs /T 2y, (4.241)

die wieder mit den Anfangsbedingungen

yl0] = 0 /[0] = tan[O]; y"[0] =~ seclO]’  (4.242)
0
gelost werden muss. Wir skalieren aber zunéchst die Gleichung in der

Form
2 2

r=Dg 4=y (4.243)
9 9

Mit dieser Skalierung lautet die Differentialgleichung der ballistischen

Kurve
" =2ve P \/1+n20n", (4.244)

mit den vereinfachten Anfangsbedingungen
n[0] = 0; '[0] = tan[O]; 1”'[0] = — sec[O]?. (4.245)

16 Am 29. Mirz 1918 (Karfreitag) wurde durch Zufall in Paris eine Kirche wihrend
eines Gottesdienstes getroffen, was eindeutig ein Kriegsverbrechen darstellte
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Fig. 4.33: Der extremale Elevationswinkel fir mazimale Wurfweite als
Funktion der Parameter v = kv3/g und 8 = v3/(g Hg). Die untere Kurve
entspricht B = 0 (konstante Luftdichte mit der Héhe). Die weiteren Kurven
entsprechen dann 8 = 5,10, 15,20, 25, 30, 35,40. Deutlich ist zu sehen, daf
der Winkel fiir maximale Schussweite in bestimmten Sonderfdllen tber 45
Grad liegen kann.

Die beiden entscheidenden Parameter des Problems sind jetzt

_ kv, _ v
g’ gHs

(4.246)

Wiéhrend v wieder den am Boden giiltigen ballistischen Parameter dar-
stellt, bestimmt der neue dimensionslose Parameter § den Einfluss der
mit der Héhe n stark abnehmenden Luftdichte. In der Abbildung (4.33)
sind fiir den Parameter g von § = 0 bis § = 40 in Schritten von 5
die verwickelten Zusammenhénge fiir den extremalen Abschusswinkel
O,, als Funktion von v dargestellt. Die Werte konnen nur durch eine
numerische Integration der obigen Differentialgleichung gewonnen werden.
Der funktionelle Zusammenhang fiir 5 = 0 gleicht natiirlich der schon
frither berechneten Funktion in Figur (4.24).

Seit 1936 hatte die Firma Krupp das schwere Eisenbahngeschiitz Dora
oder Schwerer (langer) Gustav in drei Prototypen entwickelt. Die Rohr-
lange betrug bis zu 48 m. Im Jahre 1940 fielen der deutschen Besatzung
franzosische Pléne fiir eine Superkanone in die Hand, die nach dem Ersten



Weltkrieg unter dem Eindruck des Paris-Geschiitz entstanden sind. So
kam es 1943 zur Entwicklung von mindestens drei Typen der Kanone V3,
als Tarnname Hochdruckpumpe (HDP) genannt. Man konstruierte bis zu
150 m lange Rohre an einem etwa 50 Grad geneigtem Hang in Wollin bei
Misdroy im heutigen Polen in der Ndhe von Stettin und schliellich die
grofite Anlage bei Calais an der Atlantikkiiste. Die Mehrkammerkanonen
sollten mit vg = 1500 m/s eine Reichweite von etwa 165 km haben, was
aber nie erreicht wurde. Bei einer Skalenhohe von Hg = 8 km entspricht
dies einem ballistischen Koeffizienten von k ~ 2 % 10~% m~!. Heutzutage
sind diese technischen Entwicklungen kaum noch bekannt und haben
auch nur noch historischen Wert.

4.15 Vorhalt beim Bombenabwurf

Zu Beginn des ersten Weltkrieges 1914-1918 entstand durch die Ent-
wicklung von Kampfflugzeugen das Problem, mit einer Bombe aus einer
gewissen Flughhe genau ein Ziel am Boden zu treffen'” . So schreibt im
noch zaristischen Russland der spétere berithmte Mathematiker, Meteo-
rologe und Kosmologe A.A. FRIEDMANN (1888-1925) am 15. Februar
1915 in einem Brief von der Front:!'®

Lieber und hochverehrter Wiadimir Andrejewitsch Steklow,
heute habe ich Ihre Postkarte erhalten und méchte Ihnen und
Olga Nikolajewna meinen herzlichen Dank dafiir aussprechen,
dass Sie an mich gedacht haben und fir das Geschenk, das ich
noch nicht erhalten habe, aber wahrscheinlich bald bekommen
werde. Mein Leben verlduft ziemlich ausgeglichen, abgesehen
von solchen Unfdillen wie einer Granatsplitterexplosion in
sechs Metern Entfernung, der Explosion einer dsterreichischen
Bombe in unmittelbarer Nahe, die fast glicklich ausging, und
dem Herunterfallen auf mein Gesicht und meinen Kopf, was
zu einer aufgerissenen Oberlippe und Kopfschmerzen fiihrte.
Aber man gewdhnt sich natiirlich an all das, insbesondere an
die Dinge um sich herum, die tausendmal schrecklicher sind.

17¢s koénnen aber auch Hilfsgiiter sein, die einen bestimmten Bereich am Boden

erreichen miissen
18 Alexander A. Friedmann: The man who made the universe expand. Cambridge
University Press 1993; paperback 2006; russische Erstausgabe 1988



Kiirzlich wurde ein gutes dsterreichisches Flugzeug beschlag-
nahmt; ich habe viel mit dem gefangenen Piloten gesprochen;
der Kerl war ziemlich schlau, so dass man aus dem Gesprich
mit ihm den Eindruck gewinnen konnte, dass in Osterreich
alles in Ordnung sei, es gentigend Truppen und Munition gdbe
und der Krieg seiner Ansicht nach mit threm Sieg enden wer-
de. Das ist natiirlich Unsinn, aber dass sich der Krieg in die
Linge ziehen kénnte, ist ziemlich wahrscheinlich. Ich persén-
lich denke mach Abschluss der aerologischen Mission daran,
das Fliegen zu erlernen; dies ist nicht mehr sehr gefihrlich
und kann erfolgreich in der Meteorologie und insbesondere bei
synoptischen Beobachtungen eingesetzt werden.

Ich habe mich in letzter Zeit intensiv mit der Theorie des Bom-
benabwurfs beschiftigt, einer der Aufgaben des Groffirsten'?.
Die Frage reduziert sich auf die folgenden Gleichungen:

Weauviird, Yoy avViE i

beit =0, u=c (etwa 20m/s bis 40 m/s) und v =0; w und
v sind die Komponenten der Bombengeschwindigkeit entlang
der Koordinatenachsen, g ist die Erdbeschleunigung und a ist
ein Parameter, der die Form und das Gewicht der Bombe
charakterisiert. Die verwendeten Bomben lassen sich in zwet
Klassen einteilen: Die Bomben der ersten Klasse haben ein
sehr kleines a, die anderen einen Wert nahe 1.

Die von FRIEDMANN verwendeten Gleichungen entsprechen den klassi-
schen ballistischen Gleichungen im subsonischen Bereich. Die Bezeich-
nungen sind von den unseren etwas abweichend. So ist sein Parameter a
wohl mit dem in diesem Buch verwendeten dimensionslosen Parameter
kwv3 /g identisch. a = 1 bedeutet dann, dass die asymptotische Fallge-
schwindigkeit 1/g/k der Bombe identisch der Fluggeschwindigkeit des
Flugzeugs entspricht. FRIEDMANN versuchte nun die Gleichungen bei
kleinem a durch eine Reihenentwicklung, bei groem a durch die Approxi-
mation vu2 + v2 ~ v zu losen. Obwohl dieses Vorgehen durch die Praxis

YA, M. RoMmaNow (1866-1933), Onkel von Nikolaus II., russischer GroBfiirst und
Admiral, organisierte im Ersten Weltkrieg die Armeefliegerkréfte, floh 1918 von
der Krim nach Frankreich
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Fig. 4.34: Die maglichen Flugbahnen einer fallenden Bombe fir den Parame-

ter a = kvg/g von 0 bis 1 inSchritten von 0.125. Die roten Zahlen bedeuten
1000 c.

(numerische Integration und Erfahrung) einigermafien bestatigt wurde,
war FRIEDMANN mit dem Ergebnis in analytischer Hinsicht unzufrieden;
fand aber in der damaligen Literatur keine bessere Antwort.
Mathematisch ist die Bahnform einer ungelenkten “Bombe” mit Ab-
schusswinkel © = 0 von einem horizontal fliegenden Flugzeug analytisch
nicht ganz einfach zu berechnen. Natiirlich ist immer eine numerische



Quadratur in der Form

m

2 d
10/ — p (4.247)
Fug 2 2
g S 142 (p L+p +ln[p—|-\/1—|-p}>

g

m

2 d
Y= vo/ _ pap (4.248)
EYg 2 2
9 14+ 58 (py/T+p2 + mlp+ 1+ 77))

moglich, wobei die y-Koordinate die Fallstrecke zum Boden bezeich-
net. Der Parameter m ist hier das momentane Gefélle der Bahnkurve.
FRIEDMANN hat diese Kurven zumindest fiir kleine o genau berechnet.
Historisch duflerst kurios ist es, dass der osterreichischer Meteorologe,
Geophysiker und Bergsteiger H. vVON FICKER (1881-1957) sich im Kriegs-
jahr 1915 im damaligen Galizien in der Stadt Przemysl an der heutigen
polnisch - ukrainischen Grenze in der berithmten Festung aufhielt, die
wohl zur gleichen Zeit FRIEDMANN als zaristischer russischer Kampfpilot
bombadiert hatte. Im Jahre 1923 trafen sich beide in Berlin wieder, wo H.
VON FICKER eine Professur bekommen hatte und FRIEDMANN vergeblich
versuchte, A. EINSTEIN zu treffen.

4.16 Uber die Flugbahn von Golfbillen

Die Wurfparabel ist eine gute Naherung bei kleinen Geschwindigkeiten
und schweren Kugeln. Bei héheren Geschwindigkeiten oder grofieren
Billen miissen wir aber die Luftreibung beriicksichtigen. Wie wir in der
Einleitung gesehen haben, war die Aufstellung des genauen Reibungsge-
setzes ein langer historischer Prozess. Die Bewegung eines rotierenden
FuBballes, Tennisballs oder Golfballes stellt ein besonderes Problem dar.
Im Folgenden wollen wir zunéchst die Flugbahn eines Fufiballes betrachtet
werden, dessen Luftwiderstand und Auftriebskraft bis zu Geschwindigkei-
ten von etwa 25m/s in guter Naherung linear mit der Geschwindigkeit
zunimmt. Aufgrund des Bernoulli-Theorems gilt fiir die Auftriebskraft als
Druckdifferenz zwischen unterschiedlichen Seiten des rotierenden Balles
auch bei héheren Geschwindigkeiten noch das lineare Widerstandsgesetz.
Wir postulieren also unter Berticksichtigung des Magnuseffektes nach



(2.1) die Bewegungsgleichungen

P = —fpr—fry
j = —fpy+frt—yg.

Die als konstant angenommenen Parameter fp (drag force) und fr, (lift
force) stellen eine Art inverse Relaxationszeit dar. Zudem ist fr hier
direkt proportional der Winkelgeschwindigkeit w des rotierenden Balles.
Voraussetzung fiir die obigen Gleichungen ist, dass die Rotationsachse des
Balles parallel zum Boden und senkrecht zur Schussrichtung liegt (also
keine seitlich abweichend Bananenflanke). Der inverse Zeitparameter fp
ist immer positiv, wahrend f, je nach Rotationsrichtung des Balles positiv
(backspin) oder negativ (topspin; slice) sein kann. Durch Einfithrung
der komplexen Zahlen

z=x+1y, f=fp—1fL (4.249)
lassen sich die obigen Gleichungen in die einzige Gleichung
Z+fz4+:19=0 (4.250)

vereinigen. Thre Losung mit der Anfangsbedingung z[0] = 0 und z'[0] =
e'© lautet (12 = —1)

z:v?oe’@(l—e*“)—Zf—g(e*ft-i-ft—lf (4.251)

Die Formel besteht aus zwei Teilen: Der erste Teil proportional vy be-
schreibt eine spiralférmige Bewegung in den Fixpunkt (Pol) vge*® /f
hinein, der zweite Teil proportional g ist eine schlangenférmige Abwérts-
bewegung mit der asymptotisch konstanten Geschwindigkeitsrichtung
—1g/f. Der erste Teil proportional vy entspricht einer Bewegung langst
einer logarithmischen Spirale. Um dies einzusehen, betrachten wir die
Bewegung relativ zum Pol. Es gilt bei g = 0 fir diese Relativbewegung

Sz — 7@ez®7ft
£ .

Diese Relativbewegung stellt eine logarithmische Spirale mit dem Stei-
gungswinkel tan[g] = fp/fr dar. Mit der idealisierten Losung (4.251)
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Fig. 4.35: Die méglichen Flugbahnen eines Balles mit linearem Widerstands
- und Auftriebsgesetz, berechnet mit (4.251). Die Parameter sind hier vo =
60m/s,© = 12°,f = 0.1(1 — 24), wobei j von 1 bis 6 genommen wurde.

lassen sich so schon wichtige Eigenschaften von ballistischen Flugbahnen
eines Balles mit einem backspin (3[f] < 0) studieren und verstehen.

Fiir die Beschreibung der Flugbahn eines Fufiballes reichen diese Glei-
chungen aus, nicht aber fiir die wesentlich schnelleren Golfbélle mit
backspin. Hier miissen wir zumindest fiir den direkten Luftwiderstand ein
quadratisches Widerstandsgesetz ansetzen. Historisch ist interessant, dass
der Schottische Physiker und begeisterte Golfspieler P.G. TarT (1831-
1901) diesen Ansatz gemacht hat ([56],[57]). Fiir den Luftwiderstand
setze er nach Riicksprache mit dem irischen Mathematiker und Physiker
G.G.STOKES (1819-1903) ein mit der Geschwindigkeit quadratisches,
fiir den Auftrieb durch den backspin wieder ein mit der Geschwindigkeit
lineares Gesetz (Magnus Effekt) an. Wir wollen dieser Annahme hier fol-
gen und setzen als fundamentale Bewegungsgleichung fiir den rotierenden
Golfball mit backspin

¥o= —kvd—fg, (4.252)
—kvy+ fi—g (4.253)

an, indem v? = 2% + ¢ ist, k und f eine reziproke Lange fiir den Luftwi-

derstand sowie eine der Rotationsfrequenz w des Golfballes proportionale
Frequenzkonstante darstellen. Die eigentlichen Details eines Golfballes
soll hier nicht weiter erértert werden. Zu erwdhnen wére nur, dass die heu-
tigen Bélle an ihrer Oberflache etwa 300-450 sehr kleine Einbuchtungen



(sogenannte dimples) aufweisen, welche den Luftwiderstand gegeniiber
einer glatten Kugel deutlich verringern. Dies wurde schon 1897 in einem
Patent festgelegt.

Mit z = x 4+ 1y lassen sich nun die beiden gekoppelten Gleichungen
wieder als

Z+ (klz|—1f)z+19=0 (4.254)

schreiben. Eine geschlossene analytische Integration ist aber jetzt nicht
mehr moéglich. Man kann diese Gleichung aber als Grundlage fir eine
numerische Integration benutzen. Multipliziert man wieder die erste
Gleichung mit &, die zweite mit § und addiert beide, so folgt die erste
Grundgleichung

v+ kv +g9=0. (4.255)

Beriicksichtigen wir wieder die elementaren Beziehungen
T =wcos[d]; ¢=wvsin[f]; dx=cos[f]ds; dy=sin[f]ds, (4.256)
so gilt analog wie in der klassischen Ballistik
v+ kv® + g sin[f] = 0. (4.257)

oder mit (4.256)

v Z—U + kv? + g sin[6] = 0. (4.258)
s

Da die Auftriebskraft in unserem Modell immer senkrecht zur Flug-
richtung wirkt, ist das Ergebnis fiir die Geschwindigkeitsverdnderung
verstandlich.
Wird weiterhin die erste Gleichung von (4.252) mit ¢, die zweite mit
4 multipliziert und dann die zweite von der ersten subtrahiert, so gilt
zunéchst
Fy—fji=—fol+gi (4.259)

und wegen (4.256) schliefllich

v % = fv— g cos[d]. (4.260)




Die beiden Gleichungen (4.258) und (4.260) sind unsere Modellgleichun-
gen fiir die ballistische Kurve eines Golfballes mit backspin. Beide
Gleichungen lassen sich wiederum einfach interpretieren. Die Gleichung
(4.258) beschreibt die Kréftebilanz in tangentialer Richtung der Bahn-
kurve, die Gleichung (4.260) normal zur Kurve. Mit der Bogenlinge s
und (4.256) gilt somit die wichtige Relation

v? % = fv — g cos[d], (4.261)

wobei ds/df bis auf das Vorzeichen den Kriimmungsradius der Bahnkurve
bezeichnet.

Wir wollen jetzt wieder eine einzige Differentialgleichung fiir v[f] ablei-
ten. Dazu schreiben wir (4.257) nach der Kettenregel

dv df 9 . B
B d + kv* + g sin[f] = 0. (4.262)
Eliminieren wir hier die Gré8e df/dt mit Hilfe von (4.260), so erhalten

wir die fundamentale Gleichung

1dv g sin[f] +ko?

vdf  gecoslf] — fv’ (4.263)

Diese Differentialgleichung beschreibt die Geschwindigkeit v eines rotie-
renden Golfballes mit backspin als Funktion des Steigungswinkel 6 seiner
Flugbahn.

Eine exakte Integration der Gleichung (4.263) scheint nicht moglich
und auch nicht sinnvoll zu sein. Ahnlich wie P.G.TAIT im Jahre 1891
konnen wir zunéchst den Spezialfall ¢ = 0 betrachten. In diesem Fall
reduziert sich die Gleichung (4.263) auf

1 dv k

T
Eine Integration liefert zunéchst

1k
5—?04—0.



Vollig unabhéngig von der Integrationskonstanten C' sieht man hier, dass
fiir einen bestimmten Winkel 6 die Geschwindigkeit v unendlich wird.
Ohne Einschriankung der Allgemeinheit kénnen wir hier C' = 0 setzen
und so den singuldren Punkt nach 8 = 0 legen. Als Losung erhalten wir
SO

v[f] = fT{k (4.264)

Die Orientierung des Koordinatensystems wurde jetzt so festgelegt, dass
fiir @ = 0 die Geschwindigkeit unendlich ist. f > 0 (Auftrieb) gilt jetzt
6 > 0, fir f < 0 (Abtrieb) gilt entsprechend § < 0. Setzen wir diese
Losung in (4.261) mit g = 0 ein, so folgt die bemerkenswerte Relation

_1db
k6
wobei nun die Grofle fr herausgefallen ist. Die eigentliche Differenti-

algleichung der spiralférmigen Bahn im Falle g = 0 lautet mit (4.256)
also

ds (4.265)

1 cos[d] 1 sin[6]
k0 E 0

Dies war auch das Resultat von P.G. TAIT Ende des 19ten Jahrhunderts.
FEine Quadratur ergibt zunéchst die Darstellung

? cos 9 sin
olf) = /0 ) f] i€l =g /0 5[5] dE. (4.267)

Das Integral fiir  divergiert aber in Richtung der Asymptoten fiir £ — 0
und x — —oo. Wir verschieben das Koordinatensystem in der x-Richtung
aus dem Unendlichen in den Pol , indem wir schreiben

) 0 .
ﬂf[@]:—% /6 Cozm d, y[e]:% /O Slz['s] e, (4.268)

Mit dem Integralsinus und Integralcosinus erhalten wir so fiir die Spiral-
bahn endgiiltig

dx = de, dy = ds. (4.266)

2[0] = %Ci[@], ylo] = %Si[&]. (4.269)

Die Spirale hat universellen Charakter, denn weder der Auftriebspara-
meter f noch die Anfangsgeschwindigkeit vy spielt fiir die Gestalt der
Kurve eine Rolle.



28. —PRrOFESSOR TAIT.
Theory of Golf, |

Fig. 4.36: Der schottische Physiker und Philosoph P.G. Tait (1831-1901)
hat sich gegen Ende des 19ten Jahrhunderts intensiv mit der Flugbahn von
Golfbdllen mit backspin (Magnus-Effekt) beschiftigt. Auch Flugbahnen mit
einer Schleife (looping) hat er numerisch untersucht, die aber theoretisch nur
bet extrem schnellen Rickwdrts-Rotationen des Golfballes auftreten wirden.
Neben der Spiralbahn im Falle g=0 zeigt Fig.4 auch eine Schleifenbahn, die
TAIT aber nur graphisch abgeschitzt (,geraten®) hat.

Wir wollen am Schluss fiir flache Flugbahnen eines Golfballes eine gené-
herte analytische Darstellung dieser Bahnkurven ableiten. Aus (4.258) und
(4.261) lasst sich die Erdbeschleunigung ¢ eliminieren. Durch Einfiihrung
von u = v cos[f] erhélt man so die Differentialgleichung

d
d—z +ku+t fsinfd] = 0. (4.270)

Die Gleichung (4.261) nimmt schliefilich die Form

g cos[f]? n f cosl[d]

' (4.271)

ds U u
an. Aus beiden so modifizierten Gleichungen kann man eine erste Nahe-
rung fiir die Bahnkurve in cartesischen Koordinaten gewinnen. Genauer

ist es aber, parallel dazu auch eine Taylor-Entwicklung der Bahnkurve
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Fig. 4.37: Die Spiralbahn eines rotierenden Golfballes im Falle g = 0, in der
Literatur auch Nielsen’s Spirale (sici spiral) genannt.

zu berechnen, um die Parameter der erste Naherung aus der Stérungs-
rechnung zu verbessern. Mit der Abkiirzung

Glgl=e—¢-1 (4.272)

erhélt man so fiir die Bahn eines Golfballes mit back spin die Ndherung

y ~ tan[O] z + f]jji‘;[o@] Gk sec[©] 2] — ﬁ%g G[2k sec[O] z]. (4.273)

Die Ndherung von P.G.TAIT sieht genauso aus, nur ist bei Thm sec[0] ~ 1
und tan[O] ~ ©. Der Abgangswinkel © wird im Golf als Loft bezeichnet.
Ein Vergleich mit numerischen Integrationen zeigt, dass bis knapp iiber
die blow up Grenze, bei der beim Abschlag Auftrieb und Gravitation
ausgeglichen sind, die analytische Darstellung der Bahnkurve eine gute
Approximation darstellt.



100,

80

)

60

y [m]

S ——
\’

|

IR VAN

20 yMWX |
0 I N

Fig. 4.38: Die Flugbahnen eines Golfballes , berechnet mit einer numerischen
Integration von (4.252,4.253). Die Parameter sind hier vo = 80m/s,© =
10°,k = 0.01m~L, f = 0.2 % j, wobei j von 1 bis 5 genommen wurde.

4.17 Einfluss der Erdrotation

Der britische Mathematiker J.E. LITTLEWOOD (1885-1977) berichtet
in seinem Buch A Mathematician’s Miscellany aus dem Jahre 1953 von
einer Begebenheit wahrend des Seegefechtes am 8. Dezember 1914 vor
den Falklandinseln zwischen mehreren britischen Schlachtschiffen und
zwei deutschen Panzerkreuzern der Ostasienflotte , die ihm ein britischer
Offizier als unmittelbar Beteiligter mitteilte. Die britischen Schiffe began-
nen auf grofle Distanzen zu feuern, verfehlten aber stindig ein deutsches
Schiff zunichst immer um etwa 100 Yards?® linksseitig. Man hatte zwar
beim Zielen auf grofie Entfernungen stillschweigend auch die Drift durch
die Erdrotation durch einen Linksvorhalt berticksichtigt, aber vergessen,
dass man sich auf der Siidhalbkugel bei etwa ¢ ~ —52° befindet, wo
keine Rechtsablenkung, sondern eine Linksablenkung auftritt. Aufgrund
des falschen Linksvorhalts verdoppelte sich so der Fehler.

Das so geschilderte Geschehen wirft die Frage nach dem Einfluss der
Erdrotation auf die Bahn einer Kanonenkugel auf. Nach Figur (4.39)
betrachten wir auf der Erdoberflache ein Koordinatensystem, bei dem die

201 yd = 0.9144 m
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Fig. 4.39: Das lokale Koordinatensystem auf der Nordhalbkugel der rotieren-
den Erde mit dem axialen Winkelgeschwindigkeitsvektor 2. Der Vektor zeigt
auf den Nordpol (Polarstern) des Himmels. Der Neigungswinkel ¢ entspricht
der geographischen Breite des Ortes. Auf der Nordhalbkugel (¢ > 0) wird eine
Wurfparabel nach rechts, auf der Sidhalbkugel (¢ < 0) nach links abgelenkt.

+x Achse nach Osten, die +y Achse nach Norden und die +z Achse in den
Zenit zeigt. Dann gelten die schon von C.F. GAuss 1802 aufgestellten
Bewegungsgleichungen (hier ohne Luftwiderstand)

T —2Qsinfp]g+2Q cosfp]Z2 = 0,
J+2Qsin[p]é = 0, (4.274)
Z—2Qcoslp]t = —g.

Die Grofle Q = 7.292-107% 57! bedeutet die Winkelgeschwindigkeit
der Erdrotation und ¢ die geographische Breite. Um die Gleichungen in
zweckméfBiger Approximation zu lésen, fiihren wir fiir den Erdboden die

komplexe Koordinate
(=xz+1y



ein. Die obigen Gleichungen reduzieren sich dann auf das System

C+ 22 sinfp]( +2Q cos[p] 2 = 0,
Z—2Qcos[p]t+9g = 0.

Dieses gekoppelte System kann man einfach durch eine Reihenentwicklung
bis zur dritten Ordnung in der Zeit ¢ mit den Anfangswerten z[0] = y[0] =
z[0] = 0 sowie

[0] = vo cos[O] €' £[0] = vp sin[O).

16sen, wobei «ar der Azimuthwinkel ist, der von Osten iiber Norden gezéhlt
wird. Man erhélt

C[t] = €' wg cos[O]t —

16" vy Q) cos[O] sinfp] t? —

v Q sin[O] cos[p] t* +

1

gﬂg cos[p]t3 + ...
Der erste Term beschreibt die Spur der ungestérten Wurfparabel langs
des Erdbodens in der Richtung «a, der zweite Term eine dazu orthogonale
Abweichung, die auf der Nordhalbkugel nach rechts, auf der Siidhalbku-
gel aber nach links gerichtet ist. Der dritte Term beschreibt eine reine
Westablenkung, wihrend der wvierte Term eine Ostablenkung anzeigt, wie
sie auch bei einem freien Fall in einen tiefen Schacht auftritt. Auch die

Flugzeit wird leicht modifiziert, wie man an der Losung fiir die vertikale
z Koordinate

1
z[t] = vo sin[O] ¢ + <v0 Q cosa] cos[O] cos[p] — 3 g> 2.
sehen kann. Fiir die gednderte Flugzeit ergibt sich so
Vo . U% .
T =2 — sin[O] + 2 — Q cos[a] sin[20] cos[p] + ...
g g

Mit der Wurfweite W nach der Flugzeit T' und der Gipfelhéhe H der



Bahn lasst sich das obige Ergebnis vereinfachen zu

1) = €« (1 +v2Q cos|y] %cot[@] cos[a]) W —

2H
21" Q[ — sin[p] W —
g
8 20
gQH”7 cos[y].

Wéhrend der letzte Term eine feste Westablenkung anzeigt, beschreibt
der erste Term eine Erhéhung oder Erniedrigung der Schussweite und
der zweite Term die rechts - links Abweichung vom Azimut, je nach
Erdhalbkugel. Mit den Werten W = 10000 m, H = 5000 m, g =
9.81m/s%, © = 45° und ¢ = £52° erhalten wir

2H
§QH — cos[p] ~ 19m
3 \ 9

V2QW cos|y] % cot[O] cos[a] ~ 20 cos[a] m

2H
2QW | — sinfp] ~ 37m.
g

Mit diesem Ergebnis wird die Schilderung von LITTLEWOOD verstédnd-
lich, warum beim Verwechseln der geographischen Breite und daraus
resultierenden falschem Vorhalt ein Fehler von etwa 90 Meter auftreten
kann.



5 Hypersonische Ballistik

5.1 Die erweiterten Grundgleichungen

Tritt ein Meteor oder Bolide in die Erdatmosphére ein, hat er mindestens
die lokale Entweichgeschwindigkeit an der Erdoberfliche, gegeben durch
V2g R, wo R den Erdradius und g die Erdbeschleunigung bezeichnen.
Auch in der Phase der bemannten Mondlandungen von 1968 - 1972 hatten
zum erstenmal in der Geschichte der Astronautik die zuriickkehrenden
Apollo - Kapseln Geschwindigkeiten in dieser Groflenordnung. In der
Zeitepoche von L. EULER und J.H. LAMBERT waren diese Probleme
reine Fiktion gewesen - ganz wie der Ritt von Miinchhausen auf der
Kanonenkugel. Ein besonderes ballistisches Problem stellt somit die Ab-
bremsung dieser Flugkorper dar, die sich in einer Parabelbahn einem
Planeten (Erde) ndhern und schlielich in die oberen Atmosphéarenschich-
ten eindringen. Die urspriinglichen Bewegungsgleichungen (4.1) und (4.2)

Fig. 5.1: Um auch Flugbahnen bei hoheren Geschwindigkeiten zu beschreiben,
muss man als ndchstes die Erdkrimmung und die Zentrifugalbeschleunigung
beriicksichtigen. Die x —y - Koordinaten werden hier zu ,lokalen Polarkoordi-
naten Die Griofe & ubernimmt dabei die Rolle einer Winkelgeschwindigkeit;
multipliziert mit dem Erdradius R ist diese eine Geschwindigkeit iiber Grund.
(Planetenboden y =0) .



miissen jetzt fur den Fall abnehmender Luftdichte und aufgrund sehr
hoher Geschwindigkeiten in einem zentralsymmetrischen Gravitationsfeld
erweitert werden. Die Position des Flugkorpers beschreiben wir durch
die globalen Koordinaten X, Y. Die Bewegungsgleichungen in den zwei
Vektorkomponenten lauten dann

% = —GM% ~kexp(R - r)/H.]v X, (5.1)
Vo= —GMT% —k exp[(R—1)/H,]vY. (5.2)

Dabei gilt
r:\/m; v:\/X2+Y2. (5.3)
Durch zeitlich Differentiation folgt weiterhin
rP=XX+YY; vi=XX+YV. (5.4)
Wir fithren Polarkoordinaten
X =rcosfp]; Y =rsinfg); v=+F2+r232 (5.5)

ein. Einsetzen in die obigen Gleichungen fiithrt fiir zu dem System

7= —G;sz—kexp[(R—r)/Hs]vf, (5.6)
r¢g = —27r¢—kexp[(R—r)/Hslvre. (5.7)

Daraus leiten wir mit (5.4) und dem System (5.6,5.7) fiir die Geschwin-
digkeitsdnderungen die Gleichung

v = —GM:—; —k exp[(R—r)/H,]v® (5.8)

ab. Andererseits gilt fiir den Neigungswinkel 6 zur lokalen Horizontalen
,,2
in[f] = —. 5.9
sin[6) ” (5.9)
Wird dieser Ausdruck nach der Zeit differenziert, so erhélt man (5.6,5.7)

. M 2
v = — <Gr2 _ 1;) . (5.10)




Fithren wir jetzt die lokale Koordinaten in der Ndhe des Erdbodens
r=R+y; U= T=r¢o (5.11)

ein, wo R den Erdradius bezeichnet, so lauten die gekoppelten Bewe-
gungsgleichungen

. Y
v0 = —k exp|—y/Hg] 03—GMW. (5.12)
und oM )
24 _ _ _ v .
vl = ((R+y)2 R+y) z. (5.13)

Dies sind die globalen Verallgemeinerungen der lokalen Gleichungen (4.4)
und (4.9). Die Erweiterung besteht einerseits in der Beriicksichtigung der
Abnahme von Luftdichte und Gravitation mit der Hohe und andererseits
einem Zentrifugalterm. Hier ist bemerkenswert, dass dort v? anstatt 2>
steht. In den meisten Féllen wird die Héhenabhéngigkeit der Gravitation
im Erdnahen Bereich vernachléssigt. Also gilt mit

g= %; T =w cos[f]; y=wv sin[d]
0 = —k exp[—y/H,]v? — g sin[f]. (5.14)

und

vl =— <g - 1;) cos[f]. (5.15)

Wegen (5.11) konnen wir alternativ die Bewegungsgleichungen (5.6) und
(5.7) auch

. . by
= —ke Hs - — 5.16
Z e vE— 5, (5.16)
Y Z“Q
j = —ke T og+——g. (5.17)

R



schreiben. Bemerkenswert ist hier, dass der Term 4¢/R ohne den Faktor
2 auftritt. Man kann aber auch zusédtzlich zum Luftwiderstand eine
Auftriebskraft bei einem supersonischen Gleitkorper beriicksichtigen. Die
Modellgleichungen lauten dann

I = —kDeinsva'c—kLefHstg—%y, (5.18)
Y Y i.z
jo= —kpe mujthie Tvit S —g. (5.19)

Hier sind kp (drag force) und ky, (lift force) als konstant angenommene
charakteristische inverse Langen fiir die aerodynamischen Kréfte. k >
0 bedeutet Auftrieb, k; < 0 bedeutet Abtrieb des Gleitkorpers. Bei
Gleitkérpern kann das Verhéltnis kr/kp durchaus Werte um 1 oder
dariiber erreichen.

Wenn diese Gleichungen fiir eine globale Analyse nicht ausreichen,
miissen wir wieder zu den allgemeinen Bewegungsgleichungen (5.1) und
(5.2) zuriickkehren. Wir fithren die dimensionslose Zeit

GM
= %t, 9= (5.20)
ein und setzen fiir die Position und die aerodynamischen Koeffizienten
die dimensionslosen komplexen Zahlen

R
p=(X+:1Y)/R, k= (kp—1kr)R, 'yzH— (5.21)
s

an, so lautet die Bewegungsgleichung in der dimensionslosen komplexen
Koordinate p (Striche bedeuten Ableitungen nach 7)

p
p” +rexply(1—I[p|)] [p'|p + PP = 0 (5.22)

Die einzigen Parameter, welche die Struktur des Gleitfluges eines hy-
personischen Koérpers bestimmen, sind demnach die komplexe Zahl s
und die reelle Grole . Durch numerische Integrationen lassen sich mit
dieser einfachen Gleichung sehr schnell antriebslose Gleitbahnen bei un-
terschiedlichen Parameterwerten untersuchen. In Fig. (5.2) ist eine solche
semiballistische Rikoschett-Flugbahn (von franz. ricocher, ,abprallen)
in der oberen Stratosphire dargestellt.



Fig. 5.2: Die rikoschettierende Gleitbahn eines hypersonischen Flugkdrpers in
der oberen Atmosphdare. Der hier komplezwertige aerodynamische Koeffizient k
ist 0.2—0.42, der Parameter v ~ 800. Erste Berechnungen solcher Flugbahnen
hat der dOsterreichische Raumfahrtingenieur E. SANGER (1905-1964) mit
seiner Assistentin I. BREDT-SANGER (1911-1983) im Rahmen des geheimen
Projektes ,,Silbervogel“ von 1938-1944 durchgefiihrt. In den USA durch die
Space Shuttles, in der UDSSR durch die analogen Raumgleiter ,, Buran*
realisiert, wobei ein kleinerer Prototyp auch als das , Vigelchen® bezeichnet
wurde.

5.2 Das Allen - Eggers Modell

Zu Beginn der 1950er Jahre entstand in der Raketenballistik das Problem,
wie Flugkorper aus dem All unbeschadet wieder zur Erde zuriickkehren
konnen, ohne das sie durch die Reibungshitze beim Wiedereintritt in die
Erdatmosphére zerstort werden, wie es fast jedem Riesenboliden (Meteo-
riten) beim Eindringen in die Atmosphére passiert (Teil des geheimen



Fig. 5.3: Kiinstlerische Darstellung von Apollo 8 beim Wiedereintritt in die
Erdatmosphdare am 27. Dezember 1968. Die Abbremsung und die Flugbahn
einer solchen Raumkapsel (,Blunt Body*) stellt ein besonderes ballistisches
Problem dar, welches ganz im Geiste von L. EULER oder J.H. LAMBERT einer
naheren analytischen Betrachtung bedarf. (Bild: NASA image S68-55292)

ICBM - Programmes). Eine fundamentale theoretische Arbeit zu diesem
Problem wurde von H.J. ALLEN und A.J. EGGERS 1953 veroffentlicht
([1])*. ALLEN und EGGERS gingen wahrscheinlich 1953 von vereinfachten
Gleichungen aus. Sie vernachléssigten simtliche Scheinkréfte, in dem sie
den Erdradius R — oo setzen. Auch die Erdbeschleunigung g wird Null
gesetzt, da sie gegen die aerodynamischen Krafte zunéchst vernachléssigt
werden darf. Die Flugbahn relativ zum geraden Erdboden wird dann
ohne Auftriebskrifte eine Gerade sein. Die beiden Grundgleichung lauten
dann

¥ = —k exp[—y/Hs|v i, = —k exp[—y/Hs]vy

Die Referenzhdhe y = 0 soll hier der Erdboden sein. In jedem Fall bezieht
sich dann k = kp (drag-force) auf diese Referenzhohe. Multipliziert man

THARRY JULIAN (HARVEY) ALLEN (1910 - 1977), Luftfahrtingenieur und Direktor des
Nasa Ames Research Center von 1965-1969. Bekannt fiir seine ,,blunt-body theory“
aus dem Jahre 1953, die aber erst 1957 veroffentlicht werden durfte. Die Theorie
war grundlegend fiir das Design der Mercury -, Gemini - und Apollo - Kapseln.



die erste Gleichung mit &, die zweite mit ¢ und addiert beide, so erhélt
man wegen T + gy = v 0

dv

-+ ke v/Hs 2 = 0. (5.23)

oder nach der Kettenregel
— — + ke v° =0. (5.24)
Y

Da aufgrund der Kraftverhéltnisse klar ist, dal in diesem Modell die
Bahn eine Gerade darstellt, substituieren wir in (5.24)

dy

i sin[©]. (5.25)

O bezeichnet hier den als positiv definierten konstanten Neigungswinkel
der ,Wiedereinstiegsbahn* in die Planetenatmosphére. Setzt man dies in
die Gleichung (5.24) ein, so erhélt man

sin[O)] % =k e v/ sy, (5.26)

Eine dhnliche Gleichung haben auch ALLEN - EGGERS 1953 betrachtet.
Wir definieren jetzt als Referenzhche y = 0 die Erdoberfliche. In der
Hoéhe y — 400 soll die Geschwindigkeit des einfallenden Korpers vy sein.
Der Parameter k bezieht sich nun auf seinen Wert am Erdboden. Es
liegt jetzt der Gedanke nahe, anstatt y eine neue unabhéngige variable 7
gemif

n=e¥/Hs, L __2 (5.27)

einzufithren. Am Erdboden y = 0 ist dann n = 1 und im luftleeren
Weltraum y — oo wird 7 = 0. Die Gleichung (5.26) vereinfacht sich dann
zu

dv  kHs  d k Hs
dn  sin[6] v dn sin[0]

(5.28)




Mit diesen Préamissen lautet die Losung der obigen Gleichung

k Hg
= — 2
v =g exp [ Sn[o] 77] (5.29)
Fiir den Betrag der Bremsbeschleunigung erhéilt man so
kH
= ko2 2 =5 emu/Hs oy H | .
a=kuj exp [ Sn[O) e y/Hg (5.30)

Diese Grofle wird beim Eintauchen des Korpers in die Atmosphéare maxi-
mal bei der Hohe

QkHS} (5.31)

Yo = HsIn [sin[@]

Bei dieser Héhe maximaler Bremsung betragt die reduzierte Geschwin-
digkeit des Korpers im Falle k Hg < 1

Ve =voe /2~ 0.61 vy (5.32)

Der Maximalwert der Bremsbeschleunigung betragt dabei

2 .
v sin[O]
Bz = g (5.33)

Dies ist ein iiberraschendes Resultat des Allen-FEggers Modells: Der Wert
der mazimalen Bremsbeschleunigung ist unabhdngig vom ballistischen
Parameter k. Dies ist duflerst bemerkenswert. Taucht zum Beispiel ein
Korper mit der lokalen Entweichgeschwindigkeit /2 g R (R = Erdradius)
in die oberen Atmosphérenschichten ein, so kann man die maximale
Bremsbeschleunigung mit der Formel

sin[6] = 300 g sin[O)] (5.34)

abschétzen. Bei einem Winkel von 5° ergibt sich hier eine maximale
Bremsung von 26 g - zu viel fiir einen menschlichen Korper.

Die Ursache der Invarianz von apmq, (5.33) beziiglich k beruht auf der
speziellen Struktur der Funktion (5.30). Man kann dies in einem noch
allgemeineren Satz zusammenfassen:



Satz: Die spezielle Funktionsklasse
flz] =k exp[—(ka)" exp[—n z/b] — z/b)

mit den positiven reellen Zahlen a, b,k und n hat als Funktion von z im
reellen Intervall 0 < z < co an der Stelle

zm:bln[{‘/ﬁka]

ein Extremum 1

nea

flzm] = (5.35)

Der Wert dieses Maximums ist eine Invariante beziiglich der Parameter
k und b, hingt also von diesen beiden nicht ab. Die Grifie e bezeichnet
hierbei die Eulersche Zahl.

Das obige Modell kann jetzt erweitert werden, indem wir zunéchst eine

Auftriebskraft in die Dynamik einfiigen. Die erweiterten Gleichungen des
Allen-Eggers Modells lauten dann

—expl—y/Hs] (kp i + kL 9)v,
= —exp[—y/Hg](kpy— ki )v.

5

Die Parameter kp = k und kj, beschreiben die Wirkung der Bremskraft
(drag force) und der Auftriebskraft (lift force bei kr, > 0). Wird wieder
einerseits die erste mit &, die zweite mit g, andererseits die erste mit
4 , die zweite mit & multipliziert und einmal addiert, das andere Mal
subtrahiert, so ergeben sich die beiden dquivalenten Polargleichungen

dv
o = —kp exp[—y/Hs]v?,
do
o = +kp, exp[—y/Hs]v.

Der Winkel 6 (nicht ©) wird hier wie gewdhnlich negativ angenommen,
wenn der Koérper in die Atmosphére flach eindringt. Wir fithren hier
wieder die Variable n gemaf} (5.27) ein und transformieren die obigen
beiden Gleichungen in

__kpHg

d d
d—n{ln[v]} TR d—n{cos[e]} =k Hs. (5.36)




Die zweite dieser Differentialgleichungen ist sofort integrabel. Wir erhalten
mit der Anfangsbedingung bei n =0

cos[f] = cos[®] + ki Hg 1. (5.37)

Taucht also der Kérper mit dem Winkel © in die Atmosphére ein, so wird
sein Winkel € immer flacher, bis er bei einem kritischen 7 zum erstenmal
fir kurze Zeit horizontal fliegt. Danach wird er wieder aufsteigen und
aufgrund diinner werdender Luft und fehlender Gravitation wieder im
Weltraum mit einer asymptotischen Grenzgeschwindigkeit vo, < vy ver-
schwinden. Der ganze Vorgang gleicht so einem inelastischen Abprall.
Um dieses genauer zu verstehen, setzen wir die Losung (5.37) in die erste
der Gleichungen (5.1) ein. Wir erhalten zunéchst

k‘D Hg
7{111[ I = \/1— (cos[® —&-kLHSn)z.

Da eine Wurzel auftritt, bleibt zunéchst unklar, auf welchem Funkti-
onszweig man sich befindet, da sin[f] beim Abprall von den dichteren
Atmosphérenschichten sein Vorzeichen wechselt. Es liegt hier der Gedanke
nahe, anstatt v — v[n] die Umkehrfunktion n — n[v] zu betrachten. Zu
diesem Zweck fithren wir die Variable

(=1In [%} ; v = Up e ¢ (5.39)

(5.38)

ein, da eine multiplikative Umeichung von v nach (5.36) immer méglich
ist. Die quadrierte Form der Gleichung (5.38) 148t sich dann
dn 2
1 — (cos[O®] + kr, Hsn)? = (kp Hg)? <d<> (5.40)
Eine Differentiation nach ( fithrt schliellich auf die scheinbare Wellen-
gleichung

2d2

kp HE — i + ki HZn+ ki, Hg cos[©] =0 (5.41)

Diese fundamentale Gleichung muss mit den Anfangsbedingungen (© > 0)




y [km]

x [km]

Fig. 5.4: Eintritt eines Flugkérpers mit Auftrieb (kL = 0.1/km; kD =0.8/km)
in eine idealisierte Atmosphdre ohne Gravitation, in der die Dichte mit der
Eindringtiefe exponentiell zunimmt. Die Flugdaten sind © = 45°, vg = 8km/s,
Voo = 0.072km/s und die minimale Hohe Hyyiyn = 8.0 km. Der dynamische
Vorgang gleicht einer inelastischen Reflexion mit identischem Eintritts - und
Austrittswinkel.

gelost werden. Man erhalt

n = ﬁ (cos L’j; ¢ @} - cos[@]) . (5.42)

Entwickeln wir (5.42) nach Potenzen von ¢, so erhilt man

sin[@] | ki cos[O]

B ki sin[O]
T kpHs T 2k Hs

3
4
o, (5.43)

CQ

Der erste Term ist identisch mit den Definitionen (5.27) , (5.39) und
(5.29) des direkten ballistischen Eintauchens ohne Auftriebskréfte.

Da ¢ = Inf[vg/v] > 0 ist, wird n genau dann null, wenn ¢ = 0 oder
¢ = 20kp/ky ist. Aus dieser Bedingung folgt fiir die asymptotische
Entweichgeschwindigkeit nach dem Abprall

Voo = Vg €XP [—2 kp 6} . (5.44)
kr



Den tiefsten Punkt in der Atmosphére erreicht der Korper, wenn 5[]
maximal wird. Mit (5.42) und (5.27) ergibt sich so

kr, Hg }

1 — cos[O] (5.45)

k
kr,
Die Geschwindigkeit in der minimalen Héhe H,;, betrigt zudem
k
VH,pin = V0 €XP {—D @] . (5.46)
kr

Bemerkenswert ist hier, dass mit Auftrieb die Findringtiefe H,,;,nicht
von der Anfangsgeschwindigkeit vy abhdngig ist.

Wir kénnen jetzt im Rahmen dieses idealisierten aerodynamischen
Modelles ohne Gravitation eine Abschétzung iiber die Abbremsung von
der zweiten kosmischen Geschwindigkeit vy = /2 g R auf etwa die erste
kosmische Geschwindigkeit /g R (Kreisbahngeschwindigkeit) machen.
Der Beschleunigungsverlauf als von Funktion von ¢ lautet wegen a =
kp v3 n explizit

a=2gkpRn[¢]e 3¢, (5.47)

Maximal wird dieser Ausdruck kurz vor dem Durchlaufen des minimalen
Bahnpunktes. Mit (5.45) folgt dann genéhert

R k _ o
Aar ~ ¢ o i Q2o 2kp/kL O (5.48)
Die maximale Bremsbeschleunigung hangt im Modell ohne Gravitation
entscheidend vom Verhéltnis kp/kz und natiirlich vom Eintrittswinkel
ab. Bei den Apollo-Missionen galt © ~ 6.5°. Mit kp/k;, = 3 und
R/Hg ~ 800 folgt die Abschitzung

Amaz ~ 15 g. (5.49)

Dieser Wert wére fiir einen menschlichen Kérper noch zu hoch. Bei einem
Winkel von 3.5° ergibt sich noch eine maximale Bremsung von etwa 6 g -
genau der Wert der Apollo-Missionen. Wir haben damit gezeigt, dass beim
Eintauchen in die Erdatmosphére es giinstig ist, dass die Raumkapsel
nicht geradewegs in tiefere Schichten eindringt, sondern zunéchst wieder
leicht aufsteigt. Spater werden wir sehen, dass beo vy ~ /2 g R durch
Beriicksichtigung der zentrifugalen Bahnbeschleunigung der Bremswert
auch bei © = 6.5° auf etwas 6 g gedriickt werden kann.



5.3 Ballistischer Wiedereintritt (Re-Entry) aus
groBBen Hohen

Im Kapitel iiber das idealisierte ALLEN - EGGERS Modells haben wir
schon die dynamischen Verhéaltnisse beim Wiedereintritt unter Brems -
und Auftriebskraften diskutiert. Die Gravitation wurde dort noch nicht
beriicksichtigt. Die damaligen Rechnungen aus dem Jahre 1953 zum ther-
mischen Verhalten haben wesentlich dazu beigetragen, den Raumkapseln
Mercury, Gemini und Apollo in den 1960er Jahren das charakteristische
o, blunt-body“ (,Stumpfer Korper®) - Aussehen zu geben, damit durch die
Schockwelle die thermische Erhitzung zum Koérper auf Abstand bleibt.

In den 1950er Jahren wurden sehr unterschiedliche Konzepten dis-
kutiert, wie eine Raumkapsel aus einer Erdumlaufbahn wieder in die
Erdatmosphére eintauchen kann (Reentry), ohne zu verglithen. Ne-
ben einem Gleitmechanismus und einem dip und skip Flugbahnmandéver
(, Eintauchen und Uberspringen®) war der semi-ballistische Wiedereintritt
das kostengiinstigste und sicherste Konzept. Um aber eine realistische
Wiedereinstiegsbahn einer Raumkapsel in eine Planetenatmosphére zu
berechnen, reichen die vereinfachten Annahmen - besonders die Vernach-
lassigung der Gravitation - des ALLEN - EGGERS Modelles nicht mehr aus.
Die hypersonische Bahn ist bei sehr flachem FEinstieg in die Atmosphére
(|®]~ 5°) gegeniiber der Erdoberfliche auch ohne Auftrieb keine Gerade
mehr, sondern eine sehr flache nach oben gedffnete Parabel. Zwei wichtige
Fragen dréingen sich hier auf:([35])?

o Welche Bahnparameter fithren zur Landung und nicht zuriick in
den Orbit?

e Welche maximalen Bremsbeschleunigungen treten bei einem optimal
glinstigen Wiedereintritt auf, wenn man Gravitation, aber keinen
Auftrieb berticksichtigt?

e Wenn der mogliche Eintrittskorridor sehr eng ist, kann eine reine
Bremsbeschleunigung eine sichere Landung garantieren oder muss
zusitzlich eine Auftriebskontrolle zur Verfiigung stehen (drag; lift-
off; lift down)

2Einen Uberblick gibt das NASA-eBook "‘Coming Home"’


http://www.nasa.gov/sites/default/files/695726main_ComingHome-ebook.pdf

Fig. 5.5: Die Apollo - Raumkapseln mussten beim Wiedereintauchen in
die Erdatmosphdre mit dber 10 km/s Geschwindigkeit einen sehr flachen
Eintauchwinkel einhalten, der in 100 km Hdéhe nur etwa 5.5 bis 6.5 Grad
Neigung zur Erdoberfliche hatte. (Bildquelle: NASA)

Eine detaillierte Antwort auf diese Fragen 18t sich natiirlich durch
numerische Integration der gekoppelten Differentialgleichungen (5.18,
5.19) erreichen. Wir wiederholen die dynamischen Bewegungsgleichungen
(5.18) und (5.19) zunéchst ganz allgemein mit Auftrieb in der Form

i:—kD€7#5 ’UJ.,'—ICLeiHLSUZ)_L‘Ry7 (550)
Y Y jf'Q
f=—kpe Hvjthye it g, (5.51)

wobei v = /&2 4 §2 ist. kp (drag force) und ky, (lift force) bezeichnen
wieder die aerodynamischen Koeffizienten am FErdboden im Abstand R
vom Erdmittelpunkt in der Referenzhohe y = 0, welche hier nicht die
Erdoberfliche bezeichnet. Im Falle £, = 0 spricht man von einem reinen
ballistischen Wiedereintritt.

Im Folgenden wollen wir zunéchst versuchen, die Differentialgleichung
(5.41) mit einem in der Néhe der Erdoberfliche wirkenden Gravitati-
onsfeld zu erweitern. Multiplizieren wir die obigen beiden Gleichungen



abwechselnd mit & und § und addieren bzw. subtrahieren sie voneinander,
so erhalten wir die Gleichungen (bei Abstieg gilt § < 0)

dv

U +kpe ¥/ Hs 2 4 g sinff] = 0 (5.52)
und &0 )
b -y/Hs ,2 _ _ v

v kre v <g R> cosld]. (5.53)

In einem ersten Schritt wollen wir den bei Flachbahnen kleinen gravi-
tativen Term ¢ sin[6] in (5.52) gegeniiber den aerodynamischen Kriften
vernachldssigen. Ansonsten analysieren wir die beiden Gleichungen (5.52)
und (5.53) in dhnlicher Weise wie im Kapitel iiber das ALLEN-EGGERS
Modell. Mit der neuen unabhéngigen Variablen 7 (5.27) erhalten wir
wegen

. v d
priakl sin[6] a - s sin[6) nd—n
jetzt anstatt (5.36)
d kp Hg

—{l = .54
dn{ no} sin[f] ’ (5:54)

o gHs Hg
n {Sm[a] n + kg HS} = ( 5 R) cos|d) (5.55)

Im néachsten Schritt machen wir fir den sehr flachen ballistischen Wie-
dereintritt die Ndherung

sin[f] ~ 6; cos[f] ~ 1. (5.56)

Auflerdem soll der Flugkorper zu Beginn mit der ersten kosmischen
Geschwindigkeit v/gR sehr flach in die obere Atmosphére eintauchen.
Also definieren wir den Parameter ¢ und setzen mit (5.39)

v=+/gRe ¢ (5.57)

Eine solche Parametrisierung ist nur gestattet, wenn wahrend des Fluges
die Geschwindigkeit v im Modell mit wachsendem ¢ monoton abnimmdt.
Es diirfen also in der ballistischen Kurve nicht zwei unterschiedliche



Bahnpunkte mit derselben Geschwindigkeit auftreten. Mit alledem gilt
anstatt (5.54),(5.55) jetzt

d¢  kpHs
- ; (5.58)
do Hg
0 — + kL H = =2 (-1 .
o {0 +hemsh = B2 @) (559)
Wir l6sen die erste Gleichung (5.58) nach 6 auf und erhalten
g _ d9 &2n
—kp H —=—kpHs—. .
d77 p Hs; i o Hs 5 (5.60)

Setzen wir diesen Ausdruck in die zweite Gleichung (5.59), die wir auch

d¢ do HS
n{ad d<+kLHS} T (624—1)

schreiben koénnen, ein, so folgt unmittelbar

d2
(kD\/RHS) YN kLRy = ¢ — 1.
Fithren wir noch die Umeichung

YI[¢]

nl¢] = toVRI:

(5.61)

ein, so folgt fiir Y — Y|[¢] die bemerkenswerte Differentialgleichung

d’Y
Y — Y = — 1. .62
e +A e? (5.62)

mit der Auftriebs-Kennzahl

kL | R
A= L. . .
kp\V H (5.63)

Eine analoge Gleichung wie (5.62) wurde zum erstenmal von dem russi-
schen Aerodynamiker V.A. YAROSHEVSKY (1932-2014) im Jahre 1964



memm———

y'=-n+(e* -1y

Fig. 5.6: Gedenkplakette fiir den legenddren unbemannten Flug der CCCP-
Raumfihre Buran (Schneesturm) 1.01 vom 15. November 1988. Auch als
Erinnerung an V.A. YAROSHEVSKY und seine fundamentale Modellgleichung
fur den Wiedereintritt eines Satelliten in die Erdatmosphdre. Der Auftrieb-
sparameter ist hier mit  anstatt \ bezeichnet.

verdffentlicht ([65, (6])%. Sie spielte Ende der 1950er Jahre wohl eine
wichtige Rolle, um die erste bemannte Raumkapsel Wostok I im Jahre
1961 mit J. GAGARIN (1934-1968) fast ohne Auftrieb (k; = 0) sicher zur
Erde zuriickzubringen. Ohne Gravitation und Zentrifugalkraft ist in (5.62)
die rechte Seite der Gleichung Null. Interessant ist dann ein Vergleich
mit der Gleichung (5.41). Entwickelt man deren Losung (5.42) bis zur
quadratischen Ordnung in ¢, so ist diese Funktion auch Losung der obigen
Gleichung (5.62). Dies zeigt die schone Konsistenz dieser fundamentalen
asymptotischen Gleichung.

Um den zuriickgelegten Weg x ldngs der Planetenoberfliche zu berech-
nen, gehen wir wieder zur Gleichung (5.53) ohne den kleinen Gravitati-

3Die Gleichung von YAROSHEVSKY mit einem Auftriebsterm war auch beim Problem
des unbemannten Raumgleiters ,Buran“ beim Wiedereintritt in die Erdatmosphére
im Jahre 1988 von Relevanz.



onsterm zuriick und schreiben mit der Kettenregel

d
—U+kD17v:O.
dzr

Mit (5.57) erhalten wir schliefilich

_ A4 _ o dg

Wenn Y — Y/[¢] aus (5.62) bekannt ist, kann auch die Wegstrecke a nach
dem Eintauchen berechnet werden. Im Falle (, = 0 ist die Stelle ( =0
eine Singularitit, die im Spezialfall A = 0 durch entsprechend modifizierte
Anfangsbedingungen umgangen werden muss. Fiir den Eintauchwinkel 6
erhalten wir mit (5.60) und (5.61)

_ [Hgay
ofﬂ/ﬁd—c. (5.65)

Mit Hg = 8 km und R = 6371 km entspricht die Bogenmaf-Grofie
v/ Hs/R ~ 2.03° Winkelgrad. Auch die dazu gehorende Flughohe 148t
sich mit Y ausdriicken. Wegen

Y
e Y/ s = ¢ = _ Yl (5.66)
kpvRHg
folgt fiir die Flughdhe
1 R Y/[¢]
HgfiHs In {HJ —Hgln |:k'DHS . (5.67)

Der erste Hohenterm betragt mit Hg = 8 km und R = 6371 km etwa
26 km. Der Flugkorper erreicht diese Hohe, wenn Y([(] = kp Hg ist.

Eine allgemeine exakte analytische Losung - selbst in parametrisierter
Form - scheint es fiir die Schliisselgleichung (5.62) nicht zu geben. Wir
spezialisieren zunéchst unsere Diskussion von (5.62) auf A = 0 (kein
Auftrieb). Dann lautet sie zunéchst

d*Y

74_22624-_1.



Eine Theorie in erster Ndherung erhalten wir, indem wir die rechte Seite
dieser Gleichung bis zur ersten Ordnung um die Singularitdt ¢ = 0 durch
die spezielle EMDEN-FOWLER Gleichung
d*Y
== =2¢
d¢z

approximieren. Als Anfangsbedingungen setzen wir Y[0] = Y’'[0] = 0,
da die Raumkapsel aus grofler Héhe mit dem Neigungswinkel © = 0 in
die tieferen Atmosphérenschichten eintauchen soll. Die beiden moglichen
Anfangsbedingungen Y'[0] = 0 und Y’'[0] # 0 bestimmen dabei zwei
unabhéngige Losungen der Fundamentalgleichung (5.62), worauf wir
noch eingehen werden. Durch einen Potenzreihenansatz ergibt sich so die

partikuldre Losung
2
Y[¢] =2 \/;43/2_ (5.68)

Fiir den Bremsverlauf kp v2 n[¢] gilt zunéichst allgemein

R _
a=4g FSY[C]B 24.

Maximal wird dieser Ausdruck bei (,,, welches der Gleichung

geniigt. Mit (5.68) gilt so (,, = 3/4. Das fiihrt zu der ersten Approxima-

tion
@ -3 R
max 9 \/i 63/2 g HS .

Wieder ist die maximale Bremsbeschleunigung unabhingig von dem
Parameter kp. Der numerische Koeffizient vor dem ¢ ergibt sich in dieser
ersten Approximation zu 0.2366... Um diese wichtige Zahl noch genauer
auszurechnen, 16sen wir (5.62) durch eine Potenzreihe

B 2 3/ 1 1 5 47 4
Y[C]—Q\/;C <1+6<+24<+4752C +...]. (5.70)
oder noch besser durch die Darstellung

Y[g]:2\/§§3/2 exp [<+<2+4<3+...]. (5.71)



Man erhélt fiir die maximale Abbremsung des reinen ballistic reentry
nach genauer Rechnung das Ergebnis

R
Apmaz = 0.27566... g | — (5.72)
Hgs

mit der nun durch numerische Integration berechneten Konstanten. Mit
Hg =7km und R = 6371 km ergibt sich der maximale Beschleunigungs-
wert zu

Aymaz ~ 8.3 . (5.73)

Dies ist der klassische maximale ,, g-Wert“ bei einem rein ballistischen
Wiedereintritt (ballistic re-entry) ohne Auftrieb. Dies passierte zum Bei-
spiel bei den Riickkehrmissionen von Sojus TMA-10 und Sojus TMA-11
im Jahre 2007/2008 von der ISS, wo durch eine fehlerhafte Trennfunktion
beim Abstieg die Raumkapsel automatisch auf rein ballistischen Wie-
dereintritt schaltete und eine maximale Bremsbeschleunigung von 8.5 ¢
auftrat. Fir die entsprechende kritische Héhe maximaler Abbremsung
folgt

1 R
H,=-HsIn|— | + Hg In[0.669... kp Hy]. (5.74)
2 Hg

Die Geschwindigkeit hat sich da schon auf 43% des urspriinglichen Wertes
reduziert.

Lésst sich nun die maximale Abbremsung (5.72) im Falle eines seichten
Eintauchens durch Einfiilhrung eines Auftriebs verringern? Die Antwort
lautet : ,,Jal“ Im Falle A # 0 hat die Gleichung (5.62) mit der Anfangsbe-
dingung Y[0] = 0 (Eintauchen mit Kreisbahngeschwindigkeit vo = /g R
aus ,unendlicher* Hohe) um den Punkt ¢ = 0 zwei Losungszweige. Der
eine Zweig hat die Eigenschaft Y’'[0] = 0 und der andere Zweig die Eigen-
schaft Y'[0] = ¢g = \/R/Hg O. Um die singuldre Stelle ( = 0 ergeben
sich so die Reihenentwicklungen

232 442, 1 /2 627\ 5/
2\/;g A5 (1435 ) ¢+ 6m)

Acp — 2 2¢2 + Xeq —
1 C2+ 1 31
2c 6cy

Yo[c]

Yi[¢(] = al- 2¢3+... (5.76)



’ A H Yie 2] Yge %€
1.0 || 0.37735 | 0.23344
2.0 || 0.20467 | 0.19574
3.0 || 0.15592 | 0.16328
4.0 || 0.13349 | 0.13679
5.0 || 0.11790 | 0.11707
6.0 || 0.10529 | 0.10395
7.0 || 0.09485 | 0.09469
8.0 || 0.08628 | 0.08683
9.0 || 0.07925 | 0.07959

10.0 || 0.07334 | 0.07319

Tab. 5.1: Die Kennzahlen C[)] fir die mazimale Abbremsung, also den
mazimalen Wert der Funktion Y071672C wdahrend des Wiedereintritts in
die Erdatmosphdre mit Auftrieb. Nur die Kennzahl fir das Maximum, von
Yoe2¢ strebt im Falle X\ — 0 gegen den klassischen Wert 0.27566 von (5.72).

mit dem winkelabhingigen Koeffizienten (© in Bogenmaf)

c = % sin[O)]

Mit Hilfe dieser Reihen lassen sich Startwerte in der Umgebung von
¢ — 0 fir eine numerische Integration der Gleichung (5.62) finden.
Man stellt fest, dass die Funktion Y; die Gleichgewichtsflughbahn eines
hypersonischen Gleiters aus den hohen Atmosphérenschichten mit dem
Eintrittswinkel © beschreibt, wihrend Y die ballistische Eintrittsbahn
eines Flugkorpers mit dem singuléren Eintrittswinkel © = 0 aus einer
Kreisbahn beschreibt.

Die durch Y; beschriebene Bahn macht kleine wellenartige Bewegun-
gen um die fast ungestorte Gleitflugbahn, die man als Phygoide mit
» Rikoschettieren“ bezeichnen kann. Dies spiegelt sich auch im Bremsver-
lauf wihrend des Eintrittes in die Atmosphére wider. In der Figur (5.7)
wird dieser Verlauf als Funktion der abnehmenden Geschwindigkeit fiir
drei unterschiedliche Eintrittswinkel dargestellt.

In Tabelle (5.1) kann man erkennen, dass mit einem realistischen Auf-
triebsparameter A ~ 10 fiir die Erdatmosphére die maximale Abbremsung
wahrend des Abstieges auf unter a,,q4, ~ 4 g gedriickt werden kann.
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Fig. 5.7: Bremsverlauf fir drei Eintrittswinkel. kp /kr = 3. Wellenférmige
Strukturen sind sichtbar (Phygoide). Zudem treten zwei Bremsphasen auf.



5.4 Skip Re-Entry aus groB3en Hohen

Ein wirklicher skip reentry tritt dann auf, wenn ein Raumfahrzeug mit
der zweiten kosmischen Geschwindigkeit

Voo = V29 R (5.77)

mit flachem Eintauchwinkel in die Erdatmosphére oder Planetenatmo-
sphére eintritt. Dies ist zum Beispiel fiir alle Mondmissionen mit Riickkehr
der Fall. Hier reichen zur Beschreibung der Bahn die Gleichungen von
YAROSHEVSKY nicht mehr aus. Fiir diesen Fall des coming home ist es
aber in jedem Fall giinstiger und auch notwendig, die urspriinglichen
Bewegungsgleichungen (5.18) und (5.19) numerisch zu integrieren.

Die numerische Integration geht von den beiden Bewegungsgleichungen
(5.18) und (5.19) mit den inversen Langen kp des Luftwiderstandes und
des Auftriebes k,

¥ o= —e YHS (kpvi+4kpvg)— x—Ry,
)
i = —e Vs (kpvjg—kpvi)+ 7
aus. Wir fithren zunéchst die ungleichen Skalierungen
x[t] = Hs R X|[1];
y[t] = HsY[r]+ Hs In[kp \/Hs R (5.78)

mit der dimensionslosen Zeit

- |9
Tﬂ/HS t (5.79)

ein. Mit g = 9.81m/s? und Hg = 8000 m entspricht dem Zeitintervall
A7 =1 die typische Zeitspanne

H
At = [ =2 ~ 30 sec.
g

Die dimensionslose Hohenskalierung Y[7] hdangt mit der Yarosheuvsky -
Funktion Y durch die Relation (siehe (5.66))

Y = —In[Y] (5.80)



zusammen. Der Erdboden y = 0 ist nun aber nicht mehr identisch mit
Y = 0. Mit (5.78) folgt fiir den Erdboden der Y - Wert

1/2
s (1)
S

Als obere Grenze nehmen wir die Kdrmén-Linie (siehe Gleichung (5.167)).
Damit gilt fiir den physikalisch sinnvollen Bereich das Intervall

1/2
—In lkD HS (;)
S

Die untere Grenze liegt fiir kp Hs ~ 2 bei etwa —4, die obere Grenze
grob bei +10.

Mit alledem folgt zunéchst fiir die Bewegungsgleichung in horizontaler
und vertikaler Richtung

X/l — —€_Y / X2 _~_ﬁ2 Y2 (Xl +ﬁ2 )\Yl) _ ﬁ2 X/ }//7 (582)
Y// — _e—Y /X/2 +62 Y2 (Y/ _ )\X/) +X/2 —1. (5.83)

In diesen Gleichungen tritt neben dem Auftriebsparameter A (siehe 5.63)
der fiir eine typische Planetenatmosphére relativ kleine Parameter

Hgs

/2
<Y[r]<-In [kp Hg <R>3 ] . (5.81)

Hg

8= 7 (5.84)
auf. Bei der Erde betriagt dieser Parameter 5 wegen Hg ~ 8 km und
R =~ 6371 km etwa 0.0354, das Quadrat also nur 0.001. Quadrate von
B wollen wir zunéchst in unserem Modell vernachléssigen. Wir wollen
deshalb die obigen Gleichungen weiter vereinfachen. Da die Reentry
- Bahnen immer sehr flach zur Planetenatmosphére sind, werden wir
fir unser numerisch - analytisches Modell den Term proportional 3
vernachldssigen. In dieser ,, Flachbahnndherung® gilt nun sehr kompakt

X'"+e Y X% = 0, (5.85)
V'i4e™ (XY -AX?)+1-X"7 = 0. (5.86)

Als einzige Kennzahl tritt in diesen idealisierten Bewegungsgleichungen
nur noch der Auftriebsparameter A auf. Damit sind beide gekoppelten
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Fig. 5.8: Ein Vergleich der Yaroshevsky-Funktion Y|[C] einschlieflich der
ersten Korrektur (rot) mit der entsprechenden Funktion exp[—Y[7]] als Funk-
tion von ¢ = — In[X'[7]].

Gleichungen der YAROSHEVSKY- Gleichung (5.62) dquivalent. Wir wollen
dies direkt zeigen, indem wir die kritische Kennzahl 0.275... der maxi-
malen Beschleunigung aus den obigen Gleichungen ableiten. Wir setzen
also zundchst A = 0 und erhalten

X//+6—Y X/2 _ O,
YI/+€_YX/YI+]_ _X/2

Diese Gleichungen miissen wir jetzt bei einem ballistischen Eintritt mit
den Anfangsbedingungen

X[0]=0; X'[0]=1; Y[0]=10; Y'[0]=0
l6sen. Der Bremsverlauf ergibt sich zunichst zu (hier negativ normiert)

a=—(X'[7]?+82Y'[r]?)e ¥l g H% (5.87)

Da 8 <« 1 (siehe (5.84)) ist, kénnen wir mit der obigen Bewegungsglei-
chungen fiir den Verlauf geniigend genau auch

R



schreiben. Eine numerische Integration ergibt als Maximum der Bremsbe-
schleunigung bei einem ballistischen Eintritt die kritische Zahl 0.2758...,
in sehr guter Ubereinstimmung mit der Yaroshevsky-Gleichung. Auch die
direkte Korrespondenz

Y[(]=e Y ¢ =—In[X'[7]] (5.89)

wird durch ein Vergleich mit der Funktion (5.70) in der Figur (5.8) sehr
schon bestatigt.

Bei einer Mondriickkehrbahn wéhlen wir in den dimensionslosen Skalen
jetzt die Eintrittsdaten

X[0]=0;  X'[0] = V2 cos[O];
Y'[0] = 10; Y'[0] = —\/g sin[O)].

bei dieser wesentlich hoheren Geschwindigkeit tritt trotz flachem Eintritt
das Phanomen auf, dass durch den konstanten Auftrieb die Raumkapsel
zwar abgebremst, aber danach wieder so stark abprallt, dass sie einen
sehr weiten Bogen bis zum néchsten Wiedereintritt vollfithrt. Es muss
daher nach dem Abprall Vom Flugmodus “Auftrieb” zum Flugmodus
“Abtrieb” gewechselt werden. Der Parameter A muss also sein Vorzeichen
wechseln.

Frithere Abschitzungen lassen vermuten, daf§ die Abstiegsbahn einen
Sattelpunkt hat, wenn C ~ 10 ist. Diese kritische Kennzahl C kénnen
wir jetzt genau numerisch berechnen. Die zwei Bedingungen fiir einen
Sattelpunkt zu irgendeinem Zeitpunkt 75 lauten

Yir]=0;  X'[r]=1 (5.90)

Erst jetzt wird der freie Kurvenparameter C zu einer kritischen Kennzahl
, welche mit (?77?) die Sattelpunkt - Passage bestimmt. Nach einer para-
metrischen numerischen Integration der beiden Bewegungsgleichungen
lassen sich die Hilfsvariable 74 und die wichtige Kennzahl C aus den
zwei Bedingungen (5.90) bestimmen. Die kritische Kennzahl C fiir eine
Wiedereintrittsbahn mit Sattelpunkt ist in diesem mathematischen Modell
dann gendhert

Cingflection = 10.6674 . . .. (5.91)

Diesen Wert in (?7?) eingesetzt fiihrt zur anvisierten Perigdumshohe Hp
fiir eine Sattelpunktbahn. Im Vergleich zur Relation (5.206) mit C =
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Fig. 5.9: Eine ballistische Eintauchbahnen mit einem FEintrittswinkel von
5.1 Grad. Die Farbcodierung entspricht der Stdrke der Bremsbeschleunigung,
die in der zweiten Bremsphase am gréften ist. Dagen ist die thermischen
Belastung der Raumkapsel bei der ersten Bremsphase am gréfiten. Die Bahn
form, ist sehr sensitiv beziiglich Anderungen der Flug-Parameter, so dass beim
rein ballistischen Wiedereintritt der erlaubte Flugkorridor schwer einzuhalten
ist. Aus diesem Grunde konnten die Apollokapseln in den 1960er und 1970er
Jahren durch wechselnde Verlagerungen des Schwerpunktes (einfache 180
Grad - Drehung der Raumkapsel um die Symmetrieachse der Rotation) kleine
aerodynamische Auftriebe oder Abtriebe erzeugen, um bei Nichteinhaltung des
Korridors schnell Feinkorrekturen durchfihren zu konnen.

V27 /In[2] ~ 3.616 ist der Parameter fast um das Dreifache grofier. In der
Figur (5.9) sind drei unterschiedliche ballistische Wiedereintrittsbahnen
graphisch veranschaulicht. Die Parameter sind dabei Hg = 8000 m,
k=3-10"*m™! und g = 9.81m/s?. Wie man sieht, kann schon eine
Erhohung der Perigdumshéhe um 1 km fatale Folgen haben. In Fig (5.10)
ist zusétzlich die Bremsbeschleunigung fiir die Bahn mit dem Parameter
Hp = 52 km dargestellt. Das Hauptcharakteristikum sind hier zwei
Bremsphasen, welche eine Folge des doppelten Eintauchens in die oberen
Atmosphérenschichten ist. Der mittlere Wert der Abbremsung (G-load)
lasst sich dabei recht gut durch die Formel

a. ~ gk R exp {—P} (5.92)

abschétzen.
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Fig. 5.10: Die Bremsbeschleunigung als Funktion der Zeit bei einer ballis-
tischen Eintrittsbahn mit © = 5.1 Grad. Die Werte sind in Einheiten der
Erdbeschleunigung g (G-loading) angegeben. Bei diesem Typ von Bahnen
treten zwei ,Eintauchphasen® auf. Die maximale Bremsung ist hier knapp
tber 6 g.

Hlkm] | O[] || H[km] | O[]
300 | 11.20 300 | 11.09
250 | 10.05 250 | 9.92
200 | 8.72 200 | 8.58

150 | 7.14 150 | 6.96
122 | 6.07 122 | 5.86
100 | 5.06 100 | 4.80

Tab. 5.2: Der Wiedereintrittswinkel bei einer Parabelbahn bis zur Hdhe
der Karman-Schicht als Funktion der Flughohe fir eine Perigiumshohe Hp
von 50 km (linke Tabelle) und 55 km (rechte Tabelle). Die NASA legt den
offiziellen Eintrittswinkel in einer Héhe von 400000 Fuf (= 122 km) fest.
Der entsprechende Wert ist hier fett gedruckt.

Der physikalische Vorgang des Eintauchens gleicht bis zu einem gewis-
sen Grad dem Abprall eines platten Kieselsteines von der Wasserober-
fliche, wenn der Winkel sehr flach ist. Das scheinbare ,, Abprallen® eines
ballistischen Flugkorpers von der Erdoberfliche heifit hier natiirlich nur
der fast ungestorte Weiterflug in einer Parabelbahn oder Ellipsenbahn,
weil die Luftbremsung nicht stark genug war, den Korper vollstédndig



in die Atmosphére abtauchen zu lassen. Da fiir Zeiten t < 0 vor dem
Eintauchen fir die Hohe der Raumkapsel als Funktion der Zeit ein geome-
trischer Zusammenhang gilt, folgt fiir den Tangens des Eintauchwinkels
(Winkel hier positiv angenommen)

H - Hp

Die Tabelle (5.2) zeigt typische Werte fiir den Eintauchwinkel tan[©] = P
als Funktion der momentanen Hohe H tiber der Erdoberflache, wenn die
vorgegebene Perigaumshohe Hp anvisiert wird. Bezieht man sich beim
Eintauchen auf das Niveau der sogenannte Kdrmdn-Linie, so ergibt sich
der kritische Eintauchwinkel in erster Abschétzung zu

3Hg R
~ 71 — . . 4
C] 5R H{HS] (5.94)

Orco ~ (5.93)

Die Formel folgt aus (5.207) und (5.167), wie in einem spéteren Kapitel
noch gezeigt werden soll. Mit der Skalenhéhe Hg = 8 km und R =
6371 km ergibt sich so fir den kritischen Eintauchwinkel, um von einer
Entweichgeschwindigkeit auf eine Kreisbahngeschwindigkeit abzubremsen,
der Wert © ~ 6.43° Grad. Diese Zahl (~ 7°) spielte bei allen Apollo-
Mondmissionen der 1970er Jahre bei der Riickkehr vom Mond eine
wichtige Rolle.

Zum Abschluss wollen wir alternativ auch eine genauere Aussage zur
Bahnkurve machen, wenn der Einstieg mit der Entweichgeschwindigkeit
V2 g R erfolgt. Mit der differentiellen Bogenléinge ds = v dt 1afit sich
alternativ die Gleichung (5.55) auch als

% _ (vgz - ;) cosl] (5.95)

schreiben. Wir benutzen wieder die Beziehungen

1 dg y!

_ — .Y
tan[f] =vy'; cos[d] = Jirge ds 4y (5.96)
und erhalten fiir das Geschwindigkeitsquadrat
1 12
V—gR— 1Y (5.97)

=49 1+y/2_Ry//'



Andererseits machen wir in (5.52) die Substitution

dv dv_ld 1 d

2 2
A = — 5.98
dt vds 2ds{v} 2,/1+y?2 dz vl ( )
und erhalten fiir v? die Differentialgleichung
d
%{02}4—2]@3 e Vs \ 14y 429y =0. (5.99)

Durch Einsetzen von (5.97) in (5.99) ergibt sich eine recht komplizierte
Differentialgleichung fiir y[z], die hier aber nicht explizit aufgeschrieben
werden soll.

5.5 Flugdynamik hypersonischer Raumgleiter

Bis jetzt haben wir nicht den Einfluss einer aerodynamischen Auftriebs-
kraft auf ein in die Erdatmosphére eindringendes Flugobjekt beriicksich-
tigt. In der Fig. (5.2) ist ein Beispiel fiir die Flugbahn eines hyperso-
nischen Raumgleiters dargestellt. Wir wollen die Eigenschaften dieser
halb-ballistischen Flugbahn analytisch genauer verstehen. Die Bahn ist
nédmlich nicht mehr rein ballistisch, sondern wird auch durch aerodyna-
mische Auftriebskréfte bestimmt. Wir benutzen dazu die idealisierten
Modellgleichungen (5.18) und (5.19) und schreiben vereinfacht

F+kplylvi+klyvg = —%, (5.100)
. . . 2
J+kplylog—kelylod = +75 —g. (5.101)

Hier sind kply] (drag force) und kr[y] (lift force) die lokalen aerodyna-
maschen Koeffizienten um die Referenzbahn in der relativen Hohe y = 0.
Mit der Skalenhéhe Hg kann man fiir diese Groen in Abhéngigkeit von
der Abweichung y

kply] = kpe ¥/7s; kplyl = kpev/Hs. (5.102)

schreiben. Die relative Hohe y = 0 bezieht sich auf das ungestorte
Bahnniveau, y < 0 geht in Richtung Erdboden und y > 0 entsprechend
entgegengesetzt.



Wir wollen jetzt in der y-Gleichung die abhéngige Zeitvariable ¢ durch
die Raumvariable z ersetzten. Es gilt allgemein

dy

) = 24, 5.103
¥ o ( )
" d? Y, dy

— i 5.104
y dx2 + dx ( )

Mit Hilfe von (5.100) koénnen wir fiir die letztere Identitét (5.104) auch
o d2y . dy . (dy 2P dy ?
- 52 A ) = () sa
V=13 #? —kply }vxdx krlylv (dw AU (5.105)

schreiben. Wird dies in (5.101) eingesetzt, folgt zunéchst

LY 52 kypva {u(jﬁ) }i{u(jﬁz)}g (5.106)

Wir machen jetzt weitere Idealisierungen. Da die Gleitkurve bis zum
Punkt des Abtauchens in die tiefere Erdatmosphére sehr flach ist (y"? <
1), wird man sicherlich v ~ & annehmen koénnen. Deshalb erhalten wir
mit (5.102) schliefllich die Modellgleichung fir y — y[z]

d? 1
ke || = - & (5.107

Diese Gleichung flihrt im Spezialfall k;, — 0 und R — oo zur klassischen
Wurfparabel zurtick.

Im letzten Schritt miissen wir die Gréfe 42 konsistent in der gleichen
Approximation als Funktion von y[x] ausdriicken. Das geschieht durch
die Gleichung (5.100) unter Vernachlissigung des Termes proportional
kr. Dann gilt fur extreme Flachbahnen & ~ v

dv

7= —hp e v/ Hs o (5.108)

Die Losung dieser Gleichung mit der horizontalen Anfangsgeschwindigkeit
v[0] = vg lautet

v[z] = vy exp {—kp / e_y[s]/Hsds] (5.109)
0



Wird dieser Ausdruck jetzt in (5.107) eingesetzt, ergibt sich die nichtli-
neare Integrodifferentialgleichung

d2 1 v s
dTnZ — kL exp [_Hls] =5 % exp {2 kD/O e Yl ]/Hsds} (5.110)

fiir die semi-ballistische Gleitbahn eines hypersonischen Raumkoérpers in
der oberen Stratosphére.

Man kann diese Integrodifferentialgleichung in eine dquivalente Dif-
ferentialgleichung tiberfithren. Dazu schaffen wir den Term 1/R auf die
linke Seite, dann logarithmieren und differenzieren wir beiden Seiten nach
2 und erhalten in der Ndherung flacher Flugbahnen

&y Py ke g d

29 9k e Y/ Hs
dx3 be dz? T Hg dzx (5.111)

+2 %D eV Hs L ok kp e 2V/Hs =,

Die Geschwindigkeit vy und die Erdbeschleunigung g sind hier verschwun-
den, sie stecken jetzt in den Anfangsbedingungen. Eine analytisch exakte
Losung dieser idealisierten Fundamentalgleichung scheint unméglich und
auch nicht wiinschenswert. In der folgenden asymptotischen analytischen
Betrachtung soll immer kp # 0 als auch kp # 0 vorausgesetzt werden.
Wir wissen aus numerischen Simulationen, dass der Flugkorper bei Ge-
schwindigkeiten knapp unterhalb von vy < /¢ R eine schwach abwiérts
fiihrende Gleitbahn durchlduft. Da eine Linearisierung um y = 0 aufgrund
einer abwérts fliihrenden Gleitbahn nicht in Frage kommt, machen wir
zunéchst die bewdhrte Substitution

ylx] = Hg In[F[z]], (5.112)

bei der F[x] eine dimensionslose Funktion im Bereich F' > 0 mit F[0] =0
bezeichnet. Fiir F[z] gilt dann die Differentialgleichung

k
QkaL+2§DF+kLF’—2HSkDF”+

2 /3

F F
+2HSkD +2Hg — 7 —3HgF'F'+HgFF" =0.

Die ersten drei Terme sind frei von der Skala Hg. Setzen wir ihre Summe
gleich Null, so ergibt sich mit der IntegrationskonstantenC; die Losung

k:Dx
kr R

Flz] = Cy exp [ ] — kLR, (5.113)



Setzt man diese Losung wieder in die Integrodifferentialgleichung ohne
den Term y” ein, so folgt fiir die Integrationskonstante C; der Ausdruck

LR
1—v3/(gR)’

Damit gilt schlie8lich fiir die abwérts-fithrende Flugbahn in der ange-
strebten Néherung die Gleichung

el (5.114)

exp {—2 kD””]
yle] = Hg In |koR | — 2By

T
1 3

(5.115)

In dieser Formel kénnen wir nun durch Umeichung die Grofle kp auf
die Planetenoberfliche beziehen, so dass y[z] jetzt die tatsdchliche Hohe
iiber dem Planetenboden beschreibt. Fithren wir wieder die Hohen - und
Geschwindigkeitsvariable n sowie ¢ ( siehe 5.27,5.39 ) geméif
n=exp[—y/Hs], v =g exp[—(]

ein, so gilt anstatt (5.115)

1 gR 5.
= —< — —1;. 5.116
n kLR{vg e } (5.116)

Diese relativ einfache Funktion definiert in unserem idealisierten Modell
in erster Ndherung die semi-ballistische Gleitbahn eines hypersonischen
Raumkérpers mit der Anfangsgeschwindigkeit vg < /g R. E. SANGER
nannte diese Flugbahn die Gleichgewichtsbahn. Diese Formel folgt auch
als Naherung aus der YAROSHEVSKY Gleichung (5.62).

Wir kénnen mit (5.115) eine Abschétzung zur Reichweite W des Gleit-
fluges machen. Aus der Forderung, dass die Klammer in (5.115) null wird,
erhilt man die gute Naherung

w 1 kL |: ’08 :|
= n 5

A1
o (5.117)

welche innerhalb von etwa 5% sehr gut mit numerischen Simulationen
iibereinstimmt. Da W langs der Erdoberfliche gemessen wird, ist ¢y der
entsprechende Polarwinkel. Die Formel (5.117) ist ein erstes wichtiges



Fig. 5.11: Die Gleichgewichts-Gleitflugbahn fir die Parameter kp R = 0.1
und kr, R = 0.3, welche mit der Formel (5.115) sehr genau beschrieben werden
kann. Da hier v3 = g R/(1+ kL R) gilt, ist y[p] mit x = Ry immer negativ.

Ergebnis zur Theorie hypersonischer Gleiter. Im Geschwindigkeitsbereich
iiber 5 Mach (vg > 5 ¢s) kann nach empirischen Messungen das Verhéltnis
kr/kp nicht wesentlich grofler als 4 werden. Bemerkenswert ist zudem,
dass die Reichweite des hypersonischen Gleitfluges nur von den Verhdlt-
nissen vo/+/gR sowie kr, /kp abhingig ist, nicht aber von ihren absoluten
Werten. Diese gehen in die Bahnkurve (5.115) ein. Mit Hilfe von (5.109)
und (5.115) ist es moglich, auch die Geschwindigkeit als Funktion der
horizontalen Flugstrecke = oder des Polarwinkels ¢ = /R darzustellen.

Man erhalt ) ) L
v (Y D
—=1-(1-2 2= ). 5.118
gR ( gR) eXp{ kr (p] ( )



Damit 148t sich auch die Flugzeit bis zum Ziel mit

1k, |R 1+v9/VgR
T==-—"4/—In|l—————

2 kp g 1-— ”U()/\/ gR
berechnen. Auch hier hangt die Flugzeit nur von den Verhéltnissen der
entscheidenden Parameter ab. Fiir den Gleitwinkel 6 erhalten wir dann

ko gHs
kL U2 '

(5.119)

tan[d] = ¢/ [z] = (5.120)
Man sieht, dass mit abnehmender Geschwindigkeit der nach unten ge-
neigte Gleitwinkel immer weiter zunimmt.

Wir kénnen auch eine grobe Abschétzung iiber die thermische Belastung
des Flugkorpers zu machen. Multiplizieren wir (5.100) mit &, (5.101) mit
¢ und addieren beide Gleichungen, so ergibt sich fiir den spezifischen
aerodynamischen Energieverlust der Ausdruck

dE .
< = ko e Y/ Hs 3, (5.121)
Wie zu erwarten, hat hier der Lift-Parameter kj, keinen direkten Einfluss.
Setzt man hier den Ausdruck fiir y[z] ein und eliminiert die Flugstrecke
2 durch v, so gilt iiberraschend einfach

dE kp V2
—=_2 1—— ). 122
it~ k7Y < gR) (5.122)

Aus dieser Beziehung folgt, dass die mazimale thermische Belastung bei

einer Gleitgeschwindigkeit
R
vp = 1/% (5.123)

auftritt. Ist vy < vg, so tritt maximale thermische Belastung sofort bei
Beginn dr Gleitphase ein. Die Gleitstrecke Wg, bei der diese maximale
Belastung auftritt, folgt aus

W _ Lk [3(; v
PET TR T T2k 2 gR) |



Die kritische Hohe Hr maximaler Hitzebelastung liegt dann bei

kr R

Hgp =Hg ln[ :| =Hg In |:HR:|+HS ln[k‘LHs/Q].
s

Liegt der Beginn des Gleitfluges genau in dieser Hohe, so sieht man,
dass die kritische Belastung schon am Anfang der Bahn stattfindet. Im
kritischen Falle kR = 2 gilt v9 = vg und die maximale thermische
Belastung tritt wirklich zu Beginn des Gleitfluges auf. Historisch ist noch
interessant, dass die Beziehungen (5.117) und (5.118) wohl zum erstenmal
im Jahre 1958 in dem NACA-TR-1382 Report: A Comparative Analysis
of the Performance of Long-Range Hypervelocity Vehicles veroffentlicht
wurden ([2]).

Simulationen zeigen, dass die abwérts fithrende steuerlose Flugbahn
keine echte monoton fallende Kurve, sondern eine wellenformige Gleit-
bahn darstellt. Dies wird verstdndlich, da durch die Abbremsung der
Raumkorper in tiefere Luftschichten eindringt und dort die Gleichge-
wichtsgeschwindigkeit nicht mehr exakt erfiillt ist. Wir wollen fiir diese
charakteristische Wellenstruktur eine genédherte theoretische Beschrei-
bung ableiten. Dazu linearisieren wir die Gleichung (5.111) durch den
Ansatz

kpx

exp [—2 r R} .

2
_ Yo

gR

ylz] = Hs In |kLR +Ylz)+... (5.124)

und vernachlissigen Quadrate der als klein angenommenen Funktion [x].
Einsetzen in (5.111) fithrt mit einem CAS System auf eine lineare Diffe-
rentialgleichung dritter Ordnung in ¢[z]. Da wir an den Wellenstrukturen
dieser Funktion interessiert sind, vernachléssigen wir den Absolutterm
und den Term proportional ¥[z] in dieser Gleichung. Im letzten Schritt
fihren wir die neue unabhéngige Variable z geméafl der Transformation

2
v kpx
= - — 2 — 5.125
== (1= 5h) = 2 (0:120)
ein. Im Falle z = 1 befindet sich das Flugobjekt im Zielgebiet. Damit
erhalten wir fiir ¢'[z] die lineare Differentialgleichung

d34 d*y K2R dap
2 _ _ L _ —
27 (1—2) E +2(3—-42) 2 + (1 + (4I€2DHS 2) z) o 0. (5.126)
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Die Losungen sind Legendrefunktionen der ersten und zweiten Art

PZ[QZ - 1] +C2 Qg[QZ - 1]
z z

1 1 k2 R
0=—4=,/1+ L, 12
2+2,/ T (5.128)

Die Struktur des wellenférmigen Rikoschettierens und dessen Damp-
fung wird durch die Legendre-Polynome bzw. Legendrefunktionen schon
ausreichend genau beschrieben.

(5.127)

mit dem Parameter

5.6 Satellitenbahnen mit Luftreibung
(Aerobraking)

Seit kiinstliche Satelliten um die Erde fliegen, gibt es das Problem, die
Abbremsung von tieffliegenden Satelliten quantitativ abzuschétzen und so
Aussagen tiber ihre Lebensdauer zu machen. Ausgedehnte Atmosphéren
von Planeten kénnen durch ihre Bremswirkung entweder die exzentrische
Bahn einer Sonde immer kreisférmiger machen und so deren ballistische
Landung auf dem Planeten vorbereiten (Aerobraking) oder ihn verglithen
lassen. Daher wollen wir etwas genauer untersuchen, wie sich der Luft-
widerstand insbesondere auf die zeitliche Entwicklung der Ellipsenbahn
von Erdsatelliten auswirkt.*

Wir modellieren die gestorte Keplerbewegung einer Planetensonde
durch die Vektorgleichung

. r .
F= —GMT—?) — k[r]vr, (5.129)
wo G die Gravitationskonstante, M die Masse des Planeten (Erde), r

der Ortsvektor der Sonde und k[r] ein ballistischer Koeffizient bedeuten,
der nur vom radialen Abstand r zum Planetenmittelpunkt abhéngt. Die

4Historisch ist es sehr interessant, dass schon 1797 der preuBische Offizier und
Astronom J.P VON ROHDE die Einwirkung von Luftwiderstand auf Keplerbahnen
(Kometenbahnen) untersucht hat.([416])



Fig. 5.13: Geometrische Kenngrifien bei der Abbremsung einer Satelli-
tenbahn in den tieferen Atmosphdrenschichten eines Planeten (Erde). Hi
bezeichnet die Perigaumshohe, Ho die Apogaumshohe der Satellitenbahn tiber
der Erdoberfliche.

Geschwindigkeit der Sonde ist v = |F|. Skalare Multiplikation dieser
Gleichung mit  fithrt auf

% <1f2 _ GM) = —k[r]v®. (5.130)

2 r

FEine dhnliche Gleichung hat auch schon vON ROHDE im Jahre 1797 er-
halten, um den vermeintlichen Zerfall von Kometenbahnen abzuschétzen.
Multiplizieren wir weiter von links die Gleichung (5.129) vektoriell mit r,
so erhalten wir nach einer kleiner Umrechnung

d

7 (ExB) = —Kr]o (rx ). (5.131)

Diese Gleichung besagt anschaulich, dass der spezifische Drehimpuls
L = r x  der Keplerbahn mit der zeitlichen Rate k(r)v exponentiell
zerféllt. Wegen |L|= /G M p, wo p den sogenannten Bahnparameter



p = a(l — €2) der Bahnellipse bezeichnet, erhalten wir so die zweite
Variationsgleichung

4 In[p] = —2k[r]v. (5.132)
dt

Sie besagt, dass die grofle Halbachse der Ellipse mit einer bestimmten
Rate immer kleiner wird. Als einfachsten Fall betrachten wir zunéchst
eine Kreisbahn. Wir machen die Hypothese, dass durch Luftreibung der
Radius r[t] dieser kreisformigen Bahn sich langsam verkleinert und sich
so der Satellit immer mehr dem Erdboden nédhert. Wir priifen diese
Hypothese anhand der Variationsgleichung (5.132). Bei einer Kreisbahn
ist @ = p und die Variationsgleichung lautet

d
e} = —2k[]. (5.133)

Spéter werden wir sehen, dass hier anstatt 2 auch 2/3 stehen kann. In
jedem Falle folgt sofort die sékulare Entwicklungsgleichung fiir den Radius
r[t]

Tt + 2k[rjrv = 0. (5.134)

Aus der ersten Gleichung kénnen wir schon schlieflen, dass sich der Bahn-
radius des tieflliegenden Satelliten immer mehr verkleinert, gleichzeitig
aber - trotz Abbremsung - die Geschwindigkeit gemafi dem Keplerschen
Gesetz immer mehr vergréert. Die Erfahrung lehrt aber, dass dies nicht
immer so weitergehen kann, da irgendwann in den tieferen Luftschichten
der Satellit auf aerodynamische Fallgeschwindigkeit abgebremst werden
wird. Wir wollen diesen kritischen Ubergang hier etwas genauer unter-
suchen. In den frithen 1960er Jahren konnte man aus der Anderung
der gut messbaren Umlaufzeit Ty eines Satelliten auf den ballistischen
Koeffizienten k[r] und so auch auf die Luftdichte schliefien. Denn es gilt
mit den obigen Gleichungen

v _ _skpo. (5.135)

Ty
Als sehr einfaches Modell fiir den ballistischen Koeffizienten nehmen wir
wieder die barometrische Héhenformel

K[r] = k exp {RH_ T} . (5.136)



Die ballistische Konstante k = kp (inverse Lange; ,drag force®) gilt jetzt
fiir den Erdboden (r = R). Die Skala Hg liegt in der Troposphdire der
Erde bei etwa 8000 Metern, ist aber in der Thermosphdre grofler und
kann zudem mit der Tageszeit und bei plétzlich ausbrechenden ,,Sonnen-
stiirmen* stark schwanken. Da die mittlere freie Weglénge der Molekiile
in diesen héheren Schichten mit der Ausdehnung eines Satelliten vergleich-
bar ist, spielt auch die sogenannte Knudsen - Zahl fiir die Berechnung
des Stréomungswiderstandes eine Rolle. Aus den obigen Gleichungen folgt
dann durch Einsetzen die wichtige radiale Driftgleichung erster Ordnung

in k
P+ 2k VG M1 exp [RH_T] = 0. (5.137)
S

Das allgemeine Integral dieser Gleichung lautet

/7 Hg Erfi [, [ L =C—2kVGM exp {R} t, (5.138)
Hg Hg
wobei Erfi[z] die mit —: multiplizierte Fehlerfunktion fiir rein imaginéres
Argument bedeutet. Die Konstante C' folgt aus der Randbedingung
r(0) = R+ Hy mit der Anfangshohe Hy. Die asymptotische Losung
dieser Differentialgleichung lautet mit der Anfangshohe r(0) = R + Hy
(Ho/R < 1)

Hy vVgR1
H[t] = Hs In |:exp {0 —2kRYI } . (5.139)
Hs | s
Durch Einfithrung der Lebenszeit
eHo/Hs [Hg
T, = — | Tq .14
YT arkR | R } v (5.140)

eines Satelliten in Erdnéhe ergibt sich fiir die zeitliche Abnahme der
Flughohe die einfache Beziehung

H[t] = Ho + Hs In {1 - jfL] . (5.141)

Computersimulationen auf Basis der Gleichung (5.129) zeigen nun, dass
die zeitliche Abnahme des Bahnradius einer kreisférmigen Satellitenbahn



Fig. 5.14: Der kontrollierte Absturz des 14 Tonnen schweren ATV-002
Frachters ,,Johannes Kepler“ von der Internationalen Raumstation im Juni
2011. Da einige Details des Vergliihens in der Erdatmosphdre bis heute nicht
gut verstanden sind, hatte er einen , Reentry Break-up Recorder® an Bord .
In etwa 80 km Flughdhe brach allerdings der Kontakt ab. (Bild: ESA)

sehr genau der analytischen Formel (5.141) folgt. Auch die Geschwindig-
keit nimmt nach dem Keplerschen Gesetz in den tieferen Atmosphéren-
schichten zunéchst weiter zu. Bei einer bestimmten Héhe Hy allerdings
erreicht der Satellit kurz vor dem Ende seiner Lebenszeit seine mazimale
Orbitalgeschwindigkeit. Simulationen zeigen jetzt, dass kurz danach die
Geschwindigkeit sehr schnell abnimmt und die sékulare Gleichung (5.134)
erster Ordnung in k nicht mehr giiltig ist. Der Satellit durchlduft eine
kurze maximalen Bremsphase und stiirzt danach schnell ab. In dieser
Endphase maximaler Abbremsung und Energiedissipation findet in den
meisten Fallen auch das Verglithen statt.

Bis jetzt haben wir den Abstieg eines Satelliten in einer Kreisbahn
behandelt. Die Verhéltnisse bei einer Ellipsenbahn sind qualitativ anders.
Es gibt jetzt keinen Punkt maximaler Geschwindigkeit mehr, dafiir aber
beim Abstieg in die Atmosphére einen Zeitpunkt minimaler Exzentrizitat.
Bezeichnet man jetzt die Perigdumsdistanz mit ry, die Apogdumsdistanz
mit 79, so gilt in der Ellipsengeometrie

r1+ T 2711712 rg —T1

o= : = €= : 5.142
2 P 71+ 7o Tro + 11 ( )

AuBerdem gelten fiir den Radius 7 und die Geschwindigkeit v als Funktion



der wahren Anomalie ¢ die Beziehungen

r=—>t 2 =GM (2—1>. (5.143)
1+ € cos(ip) r a

Ist der Winkel ¢ gleich Null, geht die Sonde durch ihr Perigdum (Erdnéhe),

ist der Winkel +180 Grad, geht sie durch das Apogédum (Erdferne) der

Bahn. Mit alledem lassen sich die beiden obigen Variationsgleichungen

umschreiben und vereinfachen zu dem aquivalenten Paar

o k[r]o[r] (1= cos[g]) (r1 +12)
1 T2
By _Hrdol) (0t coslgl) (£ 72)

Diese Formeln diirfen fiir eine realistische Abschétzung weiter vereinfacht
werden. Da der ballistische Koeffizient &k (inverse Lénge) entlang der
Flugbahn aus mehreren Griinden nur unsicher modelliert werden kann,
die betrachten Bahnen zudem nicht extrem exzentrisch sind, so diirfen
wir in guter Approximation

Linfralf] ~ ~2kle] (1~ coslel) e, (5.144)
Lonfrall]) ~ ~2ke] (1+ cosly) vly) (5.145)

schreiben. Schon hier kann man den entscheidenden Mechanismus der
Abbremsung (Aerobraking) von tieffliegenden Planetensonden sehen. Ge-
rade wenn sich die Sonde im Perigium der Bahn (¢ = 0) befindet, wo die
Luftdichte am hochsten ist, erfahrt die Perigdumsdistanz r[¢] nur eine
minimale siikulare Anderung (1 — cos(y) ~ 0), withrend die Apogiums-
distanz 73 [t] eine maximale Anderung erfihrt. Die elliptische Bahn der
Sonde wird also durch die Luftreibung zunédchst kreisférmiger gemacht,
bevor sie in tiefere Atmosphérenschichten abtaucht.

Wir wollen die obigen Entwicklungsgleichungen fiir den hédufig vorkom-
menden Fall niedrig fliegender Satelliten noch weiter vereinfachen. Wir
approximieren die Bewegung der Sonde zwischen den beiden Héhenextre-
ma H; (Perigium) und Hy (Apogdum) tiber der Erdoberfliche durch die
harmonische Néherung

Y~ %(H1 +H) + %(H1 — H) cos(e). (5.146)



Fir die Geschwindigkeit v nahe der Erdoberfliche setzen wir einfach
v = /g R, wo g die Oberflichenbeschleunigung und R den Erdradius
bezeichnen. Variationen dieser Orbitalgeschwindigkeit liegen bei den
erdnahen Bahnen in der Gréfienordnung von dH/R und diirfen hier
vernachléssigt werden. Auch die Quotienten 74 2/r1 2 kénnen wir durch
die Ausdriicke H 1,2/ R approximieren. Fithren wir noch eine Mittlung
durch, indem wir {iber einen vollen Umlauf ¢ integrieren und durch 27
dividieren, so ergeben sich die merkwiirdigen Gleichungen

dH, M Hy—H\|  [H»—H
= Ve s (Lo | T L (5.147)

und

d H> _Hy4Hy Hs — Hy Hy — Hy
- _ -z - I, | ———— . 1
7 Ve s (Io s +h| = s (5.148)

Die Funktionen Ig|[z] und I [z] bezeichnen modifizierte Besselfunktionen
und V bedeutet die Geschwindigkeitskonstante

V =2kR+\/gR. (5.149)

Die obigen Entwicklungsgleichungen beschreiben in unserem stark idea-
lisierten Modell die unterschiedlich schnelle Abnahme der Perigaumshohe
und der Apogiaumshéhe (H; < Hy) mit der Zeit. Die einfache Losung
(5.141) legt es nahe, im anderen Extremfall einer stark elliptischen Bahn
die modifizierten Besselfunktionen fiir ein grofies Argument asymptotisch
zu approximieren. Wir setzen gendhert fiir x — 400

2e” n
V2mx
el‘
i_l’_
2xv27mx

Mit diesen Néherungen lauten die Gleichungen (5.147) und (5.148)
vereinfacht

Ioz] + I1[z] ~

IO [l‘] — Il[l‘]

3/2 -
dcgl ~ \; <L> ¢ TS (5.150)
s

und

e Ts, (5.151)
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Fig. 5.15: Computersimulation fiir die Perigiumshdhe (rot) und Apogdums-
héhe (blau) einer exzentrischen Satellitenbahn beim FEintauchen in die Erdat-
mosphdre. Deutlich ist zu sehen, dass die Apogaumshdéhe mit der Umlaufzeit
Lstufenweise“ abgebaut wird, da nur in Perigaumshohe die Luftreibung beson-
ders effektiv ist. Die Skala Hg wurde hier zu 8 km angenommen.

Aus diesen gekoppelten Gleichungen folgt asymptotisch das Differential

dH» 2H2—H1
dH, Hg

Das Integral dieser Relation ist

Hg H,
Ho—Hi ~—=+C 2 —
2 1 5 + 1exp< Hs>

(1 ist hier eine Integrationskonstante, die mit den Anfangsbedingungen
festliegt. Da die Beziehung asymptotisch gilt, vernachléssigen wir den
kleinen Summanden Hg/2 und erhalten die auch physikalisch einsichtige
Beziehung

(5.152)

H,—-H
H2 —H1 ~ (H20 —Hl()) exp (21[{10> .
S
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Fig. 5.16: Das stufenweise Abnehmen der FEzxzentrizitit einer erdnahen
elliptischen Satellitenbahn in einer Computersimulation. Es existiert kurz
vor dem Absturz ein Punkt minimaler Exzentrizitdt, ab dem die Exzentrizitdt
abrupt dem asymptotischen Grenzwert 1 zustrebt. Gleichzeitig halbiert sich
der Wert der grofSen Halbachse. Die Bahnparameter sind dieselben wie in
Fig. (5.15).

Die Groflen Hyg und Hsy bedeuten die Perigdumshohe und die Apo-
gdumshohe zu Beginn der Beobachtung. Die obige Beziehung setzen
wir nun in (5.150) ein und erhalten nach Integration fiir H[t] die neue
Darstellung

1 t
H[t) ~ Hio + § Hs In [1 - TJ . (5.153)

Wie bei einer reinen Kreisbahn erhalten wir wieder einen analogen zeitli-
chen Verfall fiir die Perigdumshdhe, nur ist jetzt die Skalenhohe asym-
ptotisch auf den vierten Teil reduziert. Dagegen gilt fiir den zeitlichen
Verfall der Apogédumshohe mit (5.152) und (5.153)

Hot] — Hilt] = (H20 — Hio) ,/1—%. (5.154)
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Fig. 5.17: Der Absturz von Progress M-27M im April/Mai 2015 nach einer
Fehlfunktion der Trigerrakete. Die Funktionen (5.153) und (5.154) beschrei-
ben die beobachtete Hohenabnahme sehr gut.

Die Lebensdauer T, muss jetzt aus den gekoppelten Differentialgleichun-
gen (5.147) und (5.148) gewonnen werden. Alternativ ist es auch méglich,
aus den abnehmenden Hohendaten des Perigaums und Apogédums durch
einen Fit die zwei freien Parameter Hg und T, in (5.153) und (5.154) zu
bestimmen.

In der Figur (5.18) ist der sehr schnelle Zerfall der Bahn des ersten
Satelliten Sputnik 1 mit der Zeit zu sehen. Historisch ist noch interessant,
dass man im Oktober 1957 nur die Umlaufzeit des Satelliten genau messen
konnte.” Fiir die Umlaufzeit eines kiinstlichen Satelliten um die Erde gilt
namlich mit Beriicksichtigung der Abnahme der Gravitation mit dem

5Dies wurde insbesondere an der Bonner Sternwarte 1957 durch P. LENGRUSSER,
H.G. BENNEWITZ und W. PRIESTER durchgefiihrt.
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Fig. 5.18: Der dramatische Bahnzerfall von Sputnik 1 vom 4. Oktober 1957
bis zum 4. Januar 1958, dem Tag des Verglihens in der Erdatmosphdre.
Berechnet mit den Funktionen (5.153) und (5.15/).

Abstand vom Massenzentrum nach KEPLER oder NEWTON

. |R 3. 3,

mit 6 = (Hy + Hz)/(2R). Aus einer gemessenen Umlaufzeit und einer
vom Kosmodrom Baikonur in der damaligen UDSSR, angegebenen Apo-
gdumshohe konnte man damals schnell auf eine mittlere Bahnhohe von
576 km schlieflen.



5.7 Theorie der Karman-Linie

Im letzten Kapitel wurde schon angedeutet, dass ein Satellit in einer
erdnahen Kreisbahn durch Luftreibung zwar an Héhe verliert, gleichzeitig
aber an Geschwindigkeit gewinnt. Es muss aber eine kritische Hohe ge-
ben, bei der mit zunehmender Luftreibung die Gesamtgeschwindigkeit ein
Maximum erreicht. Die Phase maximaler Abbremsung und Energiedissi-
pation findet allerdings erst in wesentlich tieferen Atmosphérenschichten
statt, wie man anhand der Gleichung (5.74) sehen konnte. Wir wollen hier
zunéichst diese wichtige kritische Hohe Hy maximaler Orbitalgeschwin-
digkeit genauer verstehen und analytisch abschitzen. Der ganze Vorgang
entspricht zudem einem ballistischen Wiedereintritt mit Eintrittswinkel
O ~ 0. Letztendlich bestimmt diese kritische Hohe die obere Grenze der
Erdatmosphére zum Weltraum.

Modell | :  Zunéchst benutzen wir einen konsistenten storungstheoreti-
schen Ansatz. Dazu formulieren wir die Bewegungsgleichung (5.129) in

Polarkoordinaten. Es gilt fiir die Radialkomponente

=

= +r S02 _ k[?"] P12 2 302 (5156)

sowie fiir die Azimutalkomponente
rg+ {20+ k] VP E @} g =0, (5.157)

Wie in der klassischen Ballistik ist es auch hier giinstig, die Geschwindig-
keitskomponenten v, und v; geméafl

vp =175 v =T (5.158)
einzufiihren. Die beiden obigen Bewegungsgleichungen lauten
2
o+ G,,.y - vf +E[r] /v +vfor =0 (5.159)

und

B+ 4 k] (Jo2 4 02 v =0, (5.160)
T

Zu beachten ist hier, dass der Faktor 2 in (5.157) in der Gleichung (5.160)
vor dem Term v, v;/r nicht mehr auftritt. Beim spiralférmigen Abstieg



wird zu Beginn sicherlich v, < v; gelten. Da die Bahn monoton abfallend
ist, konnen wir analog wie im Allen - Eggers Modell die Ableitung nach
der Zeit durch die Ableitung nach dem Radius r ersetzen. Mit den

Abkiirzungen
v=1/v2+v?

d d

und

folgen so die Differentialgleichungen (v, < vy)

dv, M 2
v 2y GQ — D e RS g = 0 (5.162)
dr r r
und d
o L0 LU (R=)/HS 0 ), (5.163)
dr r

Hier muss betont werden, dass ab jetzt r eine radiale Polarkoordinate
darstellt und nicht mehr den zeitlich verdnderlichen Ortsradius eines
Flugkorpers bezeichnet. Die Gleichungen haben jetzt den Charakter von
hydrodynamischen Feldgleichungen fiir das Geschwindigkeitsfeld v,., vy.

Wir 16sen diese beiden gekoppelten Gleichungen mit einer Stérentwick-
lung der Form

Efilr] + k3 f3[r] 4+ .. .;
GM

r

Ur

+ k2 fg[’l“] +k‘4f4[7“} +...

vy =

Wir nehmen dabei an, dass in (5.163) im asymptotischen Limes r — oo
fiir vy die Losung /GM/r gilt. Wir erhalten bis zur dritten Ordnung die
Storfunktionen

filr] = —2VG M r'/? )/ Hs
falr] = —2VG M r3/? 2E=r)/Hs L,
Hg
- r r?
falr] = —4VG M b2 B3R/ Hs (1+5HS—4H3>.



In erster Ordnung k erhalten wir so fiir die radiale Driftgeschwindigkeit
v, = =2k VG M rt/? B/ Hs

ein Ergebnis, wie wir es schon frither (5.137) durch eine energetische
Betrachtung gewonnen hatten. Fiir die tangentiale Geschwindigkeit vy
ergibt sich analog in zweiter Ordnung in k

o GM 2 2 T 3 R—r
vy = . (1 2k”Hg (Hs) exp |2 e +...]. (5.164)

Die Abnahme der tangentialen Geschwindigkeit ist somit ein Effekt
zweiter Ordnung in k. Das Quadrat der Gesamtgeschwindigkeit v? ergibt
sich in dieser N&herung identisch mit v2. Diese Stérungsentwicklung ist
aber nur semikonvergent. Man kann aber zumindest {iber die analytische
Form des Maximums eine Aussage machen. Differenzieren wir v; nach
r und setzten die Ableitung Null, so erhalten wir fiir die kritische Hohe
r = rg maximaler Geschwindigkeit die Gleichung

R —
Hs = V8kr% exp|: HTK] (5.165)
S

Auflésen nach r fithrt mit der Lambertschen Funktion mit dem Zweig
‘W_; auf den Ausdruck

2Hs W T K 5.166
Tk = — S -1 |— m ( . )

Aus der obigen Formel folgt mit einer asymptotischen Formel der Lam-
bertschen Funktion, dass die kritische Hohe maximaler Geschwindigkeit
recht gut die halb-empirische Formel

R
Hi ~2Hg In [H] + Hs In[ck k Hg] (5.167)
S

dargestellt wird. Der numerische Parameter liegt bei etwa cx ~ 0.795.
Ausgedehnte Computersimulationen mit den Gleichungen (5.162) und
(5.163) zeigen, dass die obige Formel (5.167) mit den numerischen Werten
recht gut tibereinstimmt. Wie man sieht, hdngt die kritische Hohe Hg
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Fig. 5.19: Vergleich von numerischen Simulationen (Markierungen) mit
der analytischen Formel (5.167) fir die kritische Hohe Hy, bei der die
Orbitalgeschwindigkeit eines Satelliten bei einer kreisformigen Bahn mazimal
wird. Die obere Kurve entspricht Hg = 7 km und die untere Hg = 8 km. Flir
den Erdradius wurde dabei R = 6371 km genommen.

nur vom ballistischen Parameter k, dem Erdradius R und der Skalenhohe
Hg der Atmosphére ab. Die Formel erinnert an das ALLEN-EGGERS
Modell. Der Hauptteil der obigen Formel, der nicht vom ballistischen
Koeffizienten k£ abhéngt, ist mit R = 6371 km und Hg = 8 km von der
Groflenordnung

R
2Hg In [H} ~ 107 km (Erde). (5.168)
S

In dieser Hohe, die hier nur vom Radius R des Planeten und der Ska-
lenhoéhe Hg seiner Atmosphére abhingt, befindet sich die sogenannte
Karman-Linie, die in den 1950er Jahren als gedachte Grenze der oberen
Erdatmosphére von der Fédération Aéronautique Internationale nach
einem Vorschlag von T. v. KARMAN bei 100 km festgelegt wurde®. Die

STHEODORE VON KARMAN (1881 - 1963) war ein ungarisch-amerikanischer Physiker
und Luftfahrttechniker. Er gilt als Pionier der modernen Aerodynamik und der



Abschéatzung fir die Marsatmosphére liefert iibrigens bei der Karméan-
Linie mit R = 3390 km und Hg = 11 km den iiberraschend hohen
Wert,

R
2Hg In [H} ~ 126 km (Mars). (5.169)
S

Multiplizieren wir schliefllich (5.162) mit v,, (5.163) mit v; und addieren
beide Gleichungen, so erhalten wir mit v = v? + v?
dlvl GM

Ur dr + r2

vy + k] |v[> = 0. (5.170)

Am Abstiegspunkt maximaler Geschwindigkeit gilt dann die spezifische

Energiebilanz
GM

~ v+ k[rk] V[P = 0. (5.171)
Tk

Am Umkehrpunkt ist also die zeitliche Abnahme der spezifischen Gravita-
tionsenergie gleich dem dissipativen Energieverlust durch Luftreibung. Die
radiale Sinkgeschwindigkeit ist dann auf den halben theoretischen Wert
von (5.137) gesunken. Die gleiche Bilanz gilt spéiter bei einer konstanten
Sinkgeschwindigkeit von /g/k auch in den unteren Atmosphérenschich-
ten .

Modell Il : Alternativ konnte man die kritische Héhe Hpg, unterhalb
derer der Luftozean der Erde aerodynamisch wirksam wird, auch mit der
Gleichung (5.12) gendhert abschétzen. Denn fiir den Geschwindigkeits-
verlauf gilt bei Vernachléssigung der Hohenabhéngigkeit von g

vd = —kp exp[—y/Hs|v* — g7. (5.172)

Eliminieren wir wieder mit der Kettenregel die Zeitableitung durch eine
Ableitung nach y, so gilt im Falle sehr kleiner 6
dv ) e—v/Hs

— =k —g. 1
vdy DU 7 g (5.173)

Luftfahrt- und Raketenforschung. In der Liste der damaligen Kommission tauchen
auch Namen wie W. von Braun, E. Eula, V.N. Sokolsky, B. Genty und R.B.
Dillaway auf.



Dies ware die idealisierte Modellgleichung fiir die Geschwindigkeitsén-
derung beim spiralférmigen ballistischen Abstieg einer Raumkapsel aus
einer Erdumlaufbahn. Die Abnahme der Gravitation mit der Hohe spielt
hier nur eine untergeordnete Rolle. Aus der Forderung dv/dy = 0 folgt
die notwendige und hinreichende Bedingung fiir die kritische Héhe Hy

Hp

g0k = —kpv?e Ts (5.174)

welche mit der Bedingung (5.171) dquivalent ist. Um diese Bedingung
weiter auszuwerten, benutzen wir die Funktion Y von YAROSHEVSKY.
Mit (5.57,5.65) und (5.66) erhalten wir so die transzendente Gleichung
H
fs Y'[Ck] = e 2% Y[(k] (5.175)
fur die kritische Zahl (. Ist diese bekannt, so folgt die kritische Hohe
nach (5.67) zu

kDHS}

Y] (5.176)

1 R
HK_iHS In |:HS:| +HS 1H|:

Mit der ausreichenden Ndherung (5.68) folgt aus der obigen transzenden-
ten Gleichung

3 Hs L (Hs\?
eyt Yiad=s ()

Damit erhalten wir mit (5.176) fiir die kritische Hohe der KARMANIinie
wieder den Ausdruck

1
Hyiy =2Hg In i + HgIn |- kp Hg| . (5177)
Hg 3

Wie man im Vergleich mit (5.167) sieht, wird der erste Term im vollem
Umfang bestétigt, wihrend der zweite einen etwas zu kleinen Parameter
ck ~ 1/3 aufweist.



Fig. 5.20: Das heftige Aufglithen und explosive Verdampfen des Riesenboliden
am 15. Februar 2013 tber dem Stdural, gefilmt mit einer Autokamera in
Kamensk - Uralski, etwa 200 km nordlich von Tscheljabinsk. Ein etwa zehnfach
an Masse grofSerer Superbolide in einer steileren Bahn war wahrscheinlich
die Ursache fir das Tunguska - Ereigniss am 30. Juni 1908 in Sibirien in
der Nihe des Flusses ,Steinige Tunguska® (Podkamennaja Tunguska) in der
heutigen Region Krasnojarsk. (credit: Aleksandr Ivanov; wikimedia.commons)

5.8 Das Tscheljabinsk und Tunguska Ereignis

Die Ergebnisse des vorhergehenden Kapitels lassen sich auf ein Natur-
phénomen anwenden, welches am 15. Februar im Stidural zu beobachten
war: Das Eindringen eines Riesenboliden in die Erdatmosphdre und sein
explosives Vergliihen. Neben der Dynamik spielt ndmlich auch noch die
Energiedissipation bei der Abbremsung eine wichtige Rolle. Dieser Vor-
gang fihrt sofort zu einer starken Erhitzung des Korpers und kann ihn
unter Umsténden zerstoren oder auflsen. Dies konnte man sehr schén
beim Eintauchen eines ,Riesenboliden” am 15. Februar 2013 im Stidural
bei der Millionenstadt Tscheljabinsk beobachten. Es gilt

E = —kme ¥/Hs y[]3 (5.178)

Durch Ersetzen von v[t] — v[y] folgt im Falle k Hg <« 1

E= —kmud exp |3



Der Betrag dieser Energiedissipation wird geméfl dieser Beziehung maxi-
mal in der Hohe

(5.180)

Die Hohenregion maximaler Energiedissipation liegt immer oberhalb der
Region maximaler Abbremsung, wie man durch Vergleich mit (5.31)
feststellen kann. Die Eintrittsgeschwindigkeit ist dann erst auf den Wert
(kHs < 1)

ve =vpe /% x~0.72 v (5.181)

gesunken. Letztendlich erklart dieses Ergebnis, dass groie Boliden (Me-
teore), die in die oberen Atmosphérenschichten eintauchen, zunéchst hell
aufleuchten und erst dann durch starke mechanische Beanspruchung (Ab-
bremsung) zerbrechen. Die maximale Energiedissipation betrigt (6 < 0)

3
mug

Emaz:
3€HS

sin[B)] (5.182)

und ist wieder unabhéngig vom ballistischen Koeffizienten k. Wir kénnen
die obige Formel benutzen, um die Energieleistung des Tscheljabinsk -
Boliden abzuschitzen. Wir entnehmen aus der Literatur (Internet) die
Daten”

m ~ 107 kg; vg ~ 2.0-10%m/s (5.183)

sowie
0 ~ 18°; Hg ~8-10%m. (5.184)
Fiir die kinetische Energie ergibt sich so zunéchst der Wert
Ejin ~ 2.0-10%5 [J]. (5.185)

Mit dem TNT-Aquivalent von 1kg[TNT] = 4.184 - 10% [J] oder 1 [kT] =
4.184 - 10*2 [J] entspricht dies aufgerundet dem Wert

Ejin ~ 500 [kT) (Kilotonnen TNT) (5.186)

Die maximale Energieproduktion (Energieleistung) des Riesenmeteores

"Der ,steinige“ Riesenbolide von Tunguska soll zehnfache Masse, einen Eintauchwin-
kel von etwa © ~ 45° und eine Airburst - Hohe von zirka 5 — 10 km gehabt haben

([13])-
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Fig. 5.22: Die Energieleistung des Riesenboliden am 15. Februar 2013
iber dem Stdural in Einheiten von Terra- Watt als Funktion der Héhe y
(siehe 5.179). Der effektive ballistische Koeffizient keyy wurde aufgrund der
Beobachtungen bestimmt, nach denen bet der Héhe y = 30 km ein Mazximum
der Helligkeit festgestellt wurde.

betrug

E| ~ 3.0-10%[W]
~ 300 [TW] (5.187)

Dies entspricht etwa dem 5-fachen der Leistung, welche die Erde als War-
me aus Erdmantel und Erdkern stdndig abgibt. Oder es entspricht iiber
dem 10-fachen, welches die gesamte technische Zivilisation permanent an
Leistung benétigt.

Um den Verlauf in der Fig. (5.22) zu erhalten, muss der effektive
ballistische Koeffizient k.r; im hypersonischen Bereich bekannt sein.
Dies geschah mit der Formel (5.180) mit der Information, daf in einer
Hohe von etwa 30 km die groBite Helligkeit (Lichtblitz) und somit hochste
Energieumwandlung stattfand. Die Abschéatzung liefert

kepr~5.5- 1074 [m™] (5.188)

Mit der Abschétzung

(5.189)
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Fig. 5.23: Das obere Bild zeigt den zeitlichen Verlauf der Energiedissipation
des Boliden von Tscheljabinsk um den ,, Airburst* Zeitmoment t = 0. Berech-
net mit den Formeln (5.179) und (5.193). Das untere Bild wurde mit der
gendherten ,,Glockenkurve“ (5.194) berechnet.

fiir kugelférmige Korper ergibt sich mit der Luftdichte o7, = 1.21 kg/m?,
mit der Dichte fiir Chondrite von oc, = 3300 kg/m? und ¢, (M, Re) ~ 2
ein grober Durchmesser von etwa

Deff ~1.0m (5190)

Der Bolide muss also wihrend des Airbursts (,,Luftexplosion®) in 30
km Hoéhe schon in zahlreiche Brocken im Meterbereich zerfallen sein -



damit die obigen dynamischen Formeln konsistent sind. Das durch die
Hitze induzierte Zerplatzen des Korpers erhoht auch schlagartig den
ballistischen Koeffizienten. Denn zerféllt der Bolide in N etwa gleich
grofle Teile, so erhoht sich dieser Koeflizient fiir jedes Teilstiick in

kepp ~ ko N3, (5.191)

Es bleibt noch das Problem, den zeitlichen Verlauf des Wiedereintritts
mit der Energieproduktion zu verkniipfen. Wegen (5.29) gilt

He e vltl/Hs
kse} . (5.192)

J[t] = —vo sin[O] exp {— Sn[O]

Durch Integration und Eichung der Zeitskala bei y = yg zu tlyg] = 0

ergibt sich
i Hs . k Hs eiy/HS R
tly] = v sin[O] {El {— sin[o] } —Ei {g}} (5.193)

Die Funktion Ei[z] bezeichnet wieder das Exponentialintegral. In der
Umgebung von y = yg kénnen wir durch eine Taylorentwicklung in
den beiden Formeln (5.179) und (5.193) die Héhe y in erster Ordnung
eliminieren und erhalten so in guter Naherung

dE  m g sin[6) [vg Siﬂ[9]2t2] (5.194)

it~ 3eHy P 223 H2

Hier sieht man sehr schon, dafl nicht nur das Maximum, sondern auch
der zeitliche Verlauf um das Maximum der Energieleistung in sehr guter
Néherung unabhingig von dem ballistischen Koeffizienten k ist. Ein
Vergleich der Figuren in (5.23) zeigt zudem, dafl die Funktion (5.194)
eine ausreichende zeitliche Beschreibung der Energieumwandlung liefert.

Mit den Ergebnissen wird man eigentlich unmittelbar zu einem noch
gbBerem Phianomen gefiihrt, dass sich am 30. Juni 1908 im fernen Sibirien
zugetragen hat. Dort miissen eine oder mehrere gewaltige Explosionen
stattgefunden haben, die auf einer Fldche von 2000 Quadratkilometern
circa 60 Millionen Badume wie Streichhoélzer umgeworfen haben. Nur in
einem zentralen Gebiet blieben die Badume wie Telegrafenmasten stehen,
aber all ihrer Aste beraubt. Die wahrscheinlichste Deutung ist hier wohl



das Eindringen eines Steinmeteoriten betrachtlicher Grofie in die Erdat-
mosphére. Dabei wurde die Luft und der Bolide extrem grofien Driicken
und Temperaturen ausgesetzt, die schliefflich zu seinem Zerbrechen und
explosivem Verdampfen fithrte. Der Eintrittswinkel war wahrscheinlich
steiler als bei dem Tscheljabinsk Boliden und die ,Luftexplosion“ fand
wohl nur in 5-10 km Hohe statt.

In der Hydrodynamik gibt es ein einfaches Modell, welches die Ausbrei-
tung der dufleren Hiille einer kugelférmigen adiabatischen Schockwelle
beschreibt. Das Expansionsgesetz fiir den Radius R[t] lautet

R[] = ( Eo 1* )1/5. (5.195)

k&[] 0o

Die Grofle Eg ist die Energie, die bei der Explosion freigesetzt wird,
oo die Dichte der ungestorten Atmosphére und ¢ die Zeit, die nach der
Explosion verstrichen ist. Das Gesetz wurde in den 1940er Jahren von J.
vON NEUMANN (1903-1957), L. I. SELDOV (1907-1999) und G.I. TAYLOR
(1886-1975) hergeleitet und diskutiert. Die Konstante « ist vom Adiaba-
tenindex v abhingig. Fiir diese Zahl gibt es eine Integraldarstellung, die
durch drei Appellsche F1 Funktionen gelost werden kann. Fir v = 7/5
(trockene Luft) erhdlt man «[7/5] = 0.85107185....

Wird die obige Gleichung nach t differenziert, so folgt aus beiden
Beziehungen die Relation

2] = % , /ﬁ. (5.196)

Damit 148t sich die Ausbreitungsgeschwindigkeit R der StoBwelle mit
der Entfernung R vom Explosionszentrum sehr einfach abschétzen. Das
Dichteverhéltnis direkt hinter der Schockwelle verhélt sich zur ungestorten
Dichte vor der Schockwelle nach den Hugoniot-Bedingungen wie

1
e _o+? (5.197)

0 -1
Die Verdichtung betrégt fiir v = 7/5 bei sechs.
Nach der Grafik (5.24) ist es wahrscheinlich, dass die Energie der
Tunguska-Explosion sicherlich bei 8 oder Megatonnen TNT gelegen haben
muss. Denn nur so a8t sich das Zerbersten von Fensterscheiben in 60 km
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Fig. 5.24: Ein einfaches Modell zur Abschdtzung der Windgeschwindigkeiten
wahrend des kurzen ,,Schockes® nach einer ,, Punktexplosion® ist die point
source solution einer homogenen Atmosphdare ohne Gravitationsbeschleunigung
und Dichteabnahme lings der Hohe.

Entfernung vom Epizentrum erkldren. Es gab wohl mehrere Explosionen
und auch die Hitze muss noch in 50 km Entfernung erheblich gewesen
sein. Die im Epizentrum von oben kommende heif} - verdichtete Stofiwelle
kann so auch die Existenz von ,Telegrafenmasten® (stehengebliebene
Baumstimme ohne Aste) erkliren, welche weiter aufien bis 20 km Radius
von einem fast radialsymmetrischen Muster umgeworfener Baumstdmme
umsdumt ist oder war.

5.9 Ein fly by Modell

Wir wollen mit Hilfe eines modifizierten ALLEN-EGGERS Modelles die
Geschwindigkeitsinderung eines Boliden abschétzen, der in einer geraden
Bahn die Oberfliche eines Planeten in der ndchsten Anndherung Hp
streift. Bekannt ist hier der Bolide vom 10. August 1972 iiber dem
Bundesstaat Utah, der bei Tageslicht sichtbar war und bis auf etwa
53 km Hoéhe in die Erdatmosphére eindrang und anschliefend wieder
verschwand. Die Situation ist in Fig. (5.25) dargestellt. Die wichtigste
Krafteinwirkung ist hier wieder die Luftreibung; die Gravitation ist bei



Fig. 5.25: Ein einfaches Modell zur Abschdtzung der Abbremsung eines
Boliden beim Vorbeiflug durch die oberen Atmosphdrenschichten eines Pla-
neten (,Earth-grazing fireball®). Der Einfluss der Gravitation wird dabei
vernachldssigt. Aus jingster Zeit ist hier der Feuerball ,,Grand-Teton-Meteor*
aus dem Jahre 1972 bekannt geworden.

einer hohen Eintrittsgeschwindigkeit nur von sekundérer Bedeutung. Die
entscheidende Differentialgleichung ist wieder (5.24). Hier lautet sie jetzt

ve =0. (5.198)
Die Koordinate = wird ldngs der zuriickgelegten Bahn gemessen, wobei

x = 0 der Punkt der néchsten Anndherung in der Héhe Hp tiber der
Planetenoberfliche bezeichnet. Wegen v = dx/dt vereinfacht sich die



obige Gleichung in

d
e ) (5.199)
X

Um diese Gleichung zu integrieren, benétigen wir noch die Beziehung zwi-
schen der Hoéhe y iiber Grund und der Bahnposition x. Nach Pythagoras
gilt

(R+ Hp)?> + 22 = (R+y)° (5.200)

Auflésen nach y fithrt auf den Zweig

y=—R++/(R+ Hp)?+ 22 (5.201)

Eingesetzt in die obige Gleichung fiihrt auf die Differentialgleichung

dIn[v] R—\/(R+Hp)?+2%|

Die Gleichung ist integrabel und fiithrt, wenn wir fiir die Geschwindigkeit
am niedrigsten Punkt Hp der Flugbahn den Wert v[0] = vp ansetzen,
zu der Losung

v r (7
In {] = —kefs / exp
vp 0

Im Falle x — +o0o (Austrittsgeschwindigkeit) und z — —oo (Eintrittsge-
schwindigkeit) 148t sich das obige Integral auf eine modifizierte Besselfunk-
tion K, [z] zuriickfithren. Fiir die Eintritts - und Austrittsgeschwindigkeit
erhalten wir so die Ausdriicke

—/(R+ Hp)? + t2
Hg

dt  (5.203)

In |:’U[—OO]:| _ —|—ke"%(R+Hp)K1 {R—‘_HP}
vp HS

n [v[+oo]} C keTS (R4 HP K {R+Hp}
vp Hg

Mit den Ergebnissen kénnen wir eine erste Frage beantworten: Mit wel-
cher Geschwindigkeit muss ein Bolide in die héhere Atmosphdare eintau-
chen, um wieder mit der Entweichgeschwindigkeit dieselbe zu verlassen?.
Die Entweichgeschwindigkeit setzen wir mit dem Ausdruck /2 ¢ R an.



Fig. 5.26: Ein ,Farth-grazing“ Bolide vom 20. Juli 1860, festgehalten in
einem Gemdalde des amerikanischen Landschaftsmalers F.E. CHURCH (1826-
1900). Die leicht gebogene Flugbahn muss wohl der kiinstlerischen Freiheit
des Malers zuzuschreiben sein.

Bezeichnen wir die Eintrittsgeschwindigkeit mit vy, so haben wir mit
der asymptotischen Formel fiir modifizierte Besselfunktionen die beiden
Grenzbedingungen in der Genauigkeit Hg/R

T, _Hp
Vg vpexp[—i— Eke As \/HS(R+HP):|,
V29R vpexp[—\/Zke_H}sj Hs(R+HP):|.

Durch Elimination von vp ergibt sich asymptotisch genau

\/% = exp {\/ﬂkegg v Hs (R—i—Hp)] . (5.204)

Diese Formel bestimmt fiir vy eine untere Grenze fiir die notwendige
Eintrittgeschwindigkeit eines , Earth-grazing“ Boliden als Funktion der
Oberflachenbeschleunigung g, dem Erdradius R, der Skalenhéhe Hg der
Atmosphére und dem néchsten Anndherungspunkt der Bahn in der Hohe
Hp. Es ist natiirlich klar, dass vo > /2 gR sein muss.




In dhnlicher Weise kann das Modell auch die Frage beantworten, bei
welche kritischen Hohe Hp eine Raumkapsel auf die Kreisbahngeschwin-
digkeit /g R abgebremst wird, wenn diese mit der Geschwindigkeit v/2 g R
in die Atmosphire eintritt. In diesem Fall ist vp = v/g R und man erhilt
die Bedingung

V2 = exp [ g ke 7 \/Hg (R + Hp)} : (5.205)

Durch Auflésen nach Hp ergibt sich

(5.206)

1 72R/H51 212
Hp= R LHsW_, {enH]

mk?H2

‘W _1[z] bezeichnet hier den unteren Zweig der LAMBERTSCHEN W|z] -
Funktion (siehe Anhang). Eine asymptotische Entwicklung dieser Funk-
tion fiir extrem kleine negative Argumente fiihrt bis auf Glieder der
Ordnung Hg/R zu der Darstellung

1 R V2rk Hg

Der erste Anteil dieser Abschéatzung beschreibt eine von k = kp unab-
héngige Hohe, die mit Hg = 8 km und R = 6371 km bei etwa 27 km
liegt. Im néchsten Kapitel werden wir diese Relation unter Einbeziehung
der Gravitation prézisieren.



6 Raketenballistik

Schon um das 1045 kennt man in China das Prinzip, mit Pulver Lanzen
des Feuers auf Gegner zu schieflen. Auch in Indien sind zu dieser Zeit
Raketen bekannt. Nach Europa gelangen sie spéatestens 1379, wo sie in
Italien und auch Ruménien bei kriegerischen Auseinandersetzungen gegen
osmanische Einfille zum Einsatz kamen. Bertthmt fiir seine ,, Raketen Ar-
tillerie Brigaden® war aber der indische T1pPU SULTAN (Tiger von Mysore)
(1750-1799), der seine metallischen Feuerlanzen zum Teil erfolgreich im
Kampf gegen die britische Ostindienkompanie einsetzte. Die eigentliche
wissenschaftliche Erforschung begann dann in England und Russland zu
Beginn des 19ten Jahrhunderts. Der britische Offizier und 2nd Baronet
W. CONGREVE (1772-1828) konnte unzerstorte Modelle der indischen
Metall-Raketen nach England bringen und sie dort zu 32 Pfund Raketen
mit Reichweiten von bis zu 3000 Metern weiter entwickeln. CONGREVE
war bei der britischen Bombardierung von Copenhagen 1807 anwesend
und konnte sich von der terrorisierenden Feuerwirkung der Raketen an
Gebéduden tiberzeugen. Auch bei der Volkerschlacht von Leipzig 1813
kamen Congreve Raketen unter der Leitung von Captain R. BOGUE
(1782-1813) zum Einsatz.

Der heute wenig bekannte britische Mathematiker W. MOORE (fl.c.
(floruit circa) 1806-1823) brachte im Jahre 1813 das Buch Treatise of
the Motion of Rockets heraus, in dem er zum erstenmal die sogenannte
Raketengleichung aufstellte. Er versuchte, die allgemeine Bewegung durch
Reihenentwicklungen zu meistern. ([36],[37]). MOORE war wohl zeitweise
Mitarbeiter in der Raketengruppe um CONGREVE und entwickelte wie
spater der russische Artillerieleutnant K. KONSTANTINOV (1817-1871)
1844 eine Vorrichtung, um die Geschwindigkeit eines Raketenkorpers
an jedem Punkt seiner Bahn zu vermessen. Gleichzeitig erfand er ein
ballistisches ,,Raketenpendel”, um die Impulsdnderungen wéhrend des
Abbrennens der Rakete zu untersuchen. Zuvor hatte schon im kaiserlichen
Russland der spéatere Generalleutnant der Artillerie A. D. SASSJIADKO
(1779- 1837) nach den Napoleonischen Kriegen mit neuartigen Raketen



experimentiert. Im Russisch-Tiirkischen Krieg 1828/1829 bildete er die
erste Raketenbatterie der russischen Arme. Einen Héhepunkt in Russland
bildeten dann die theoretischen Arbeiten von K. E. ZIOLKOWSKI (1857-
1935), der zu den eigentlichen Wegbereitern der Raumfahrt gezihlt werde
kann.

Im Jahre 1844 meldete in England der Erfinder W. HALE (1797-1870)
ein Patent an, welche die Congreve-Rakete mit ihrem langen Holzstab
durch eine stablose schnell rotierende Rakete ersetzen sollte. Diese durch
Rotation sich stabilisierende Rakete konnte einfacher und sicherer her-
gestellt werden und hatte Reichweiten bis zu 4000 Metern. Doch die
klassische Artillerie verbesserte sich Mitte des 19ten Jahrhunderts und
die eigentliche Entwicklung der modernen Raketentechnik fand dann erst
zu Beginn des 20sten Jahrhunderts statt. Die Hale- Rakete spielte aber in
den britischen Kolonialkriegen bis 1919 eine nicht unbedeutende Rolle.

Historisch ist weiterhin sehr bemerkenswert, dass nach der Bombar-
dierung Kopenhagens im Jahre 1807 durch die britische Flotte sich der
Leutnant A. F. SCHUMACHER (1782-1823), der jiingere Bruder des Astro-
nomen H. C. SCHUMACHER (1780-1850), einen Blindgénger der Congreve
- Raketen nahm und sich entschloss, auf der dédnischen Insel Hjelm 1816
eine vom dénischen Konig unterstiitzte eigene geheime Raketenforschungs-
station einzurichten, die noch nach seinem Tode bis 1834 als Elitegruppe
bestand hatte. Aulerdem fasste die Konigliche Akademie zu Kopenhagen,
wohl unter dem Eindruck des Raketenangriffs von 1807, den Entschluss,
ein Preisausschreiben zum Thema Congreve-Raketen auszustellen. Dort
hieB es fiir das Fach Mathematik im Jahre 1810*

A body which has the form and the figure of a cylinder, such as Congre-
ve’s rockets, is projected at a certain elevation or angle with the horizon,
and is continually impelled by the flames which iusse from it. The sub-
stance which feeds the fire is gradually consumed, and the weight of the
body diminished.

This being the case,
1.) What is the curve desribed by that body?

2.) If the inflammable matter contained by the cylinder burns
in such a manner that the inflamed strata are neither par-

1Philosophical Magazine, Band 36, p.232, 1810


https://books.google.de/books?id=fhlRAAAAYAAJ&pg=PA232&

Fig. 6.1: Vom 2. - 4. September 1807 bombardierte (terrorisierte) die briti-
sche Admiralitdt wahrend der Napoleonischen Kontinentalsperre die Stadt Ko-
penhagen. Zum FEinsatz kamen damals etwa 300 neuartige Congreve-Raketen,
welche der britische Offizier WILLIAM CONGREVE auf Grundlage der indischen
Raketen des Tipu SULTAN (Tiger von Mysore) (1750-1799) weiterentwickelt
hatte. (Bild: C.W. Eckersberg (1783-1853))

allel to each other, nor perpendicular to the axis, to what
perturbations will the rocket be subject?

3.) As it is necessary that the cylinder be performed and
hollowed, so as to afford the flame a greater surface, and
to increase the force of the flame that issues from it, it is



required to know what form or figure is most advantsgeous for
the excavation?

The society wishes that attention be paid, if possible, to the resistance and
pressure of the air; but yet the prize will be adjudged to the best answer
to the above three questions.

Nicht nur wird hier nach der Bahnkurve gefragt, sondern auch nach
detaillierten technischen Details des vorteilhaftesten Raketenkorpers.
Selbst Stabilitdtsfragen der Rakete werden hier angesprochen. Ein fir
seine Zeit (um 1810) ein extrem ungewohnliches Preisausschreiben. Fragen
der Flugstabilitdt treten heutzutage besonders im Sport beziiglich des
Anstellwinkels beim Speerwurf auf. Seit 1986 wurde der Schwerpunkt
gegeniiber dem Druckpunkt, wo die aerodynamischen Kréfte angreifen,
mehrere Zentimeter nach vorne verschoben. Die heutigen Speere sind
daher eher , ballistisch®, wahrend frither die Speere eher ,aerodynamisch®
waren, weil die Lédngsachse gegeniiber der momentanen Bahntangente eine
starkere Abweichung aufwies und so ein groflerer Auftrieb erzeugt wurde.
Bei einer Rakete konnte aber ein von Null verschiedener Anstellwinkel
(yangle of attack®) dazu fiihren, dass die aerodynamischen Kréfte die
Rakete in Rotation versetzt, was allerdings bei den indischen Raketen
des T1PU SULTAN Ende des 18ten Jahrhunderts mit ihrem Bambusstab
und Metalllanzen erwiinscht war.

6.1 Die Kopenhagener Preisaufgabe von 1810

Bevor wir die Dynamik einer Rakete vom vertikalen Start bis zu den
extrem hohen Horizontal-Geschwindigkeiten in eine Erdumlaufbahn be-
trachten, soll zunéchst der oben erwéahnte erste Punkt des Kopenhagener
Preisausschreibens von 1810 iiber die Bahnkurve und Dynamik einer
erdnahen Rakete genauer untersucht werden. In der bodennahen Raketen-
ballistik spielen drei Kréfte eine Rolle: 1) Impulsénderung durch Riicksto8,
2) Luftwiderstand, und 3) Gravitation. Einschliellich Gravitation lautet
die Bewegungsgleichung mit dem Geschwindigkeitsvektor v = (&, 9)

\'f—i—vav—i-cg%%—l—g:O, (6.1)

wo ¢4 die Ausstromgeschwindigkeit der Gase und m — m|t] die durch
das Abbrennen des Treibstoffes zeitlich abnehmende Masse der Rakete



bezeichnet. Der ballistische Koeffizient kp ist natiirlich von der Hohe y
der Rakete in der Atmosphére abhéngig, was hier aber vernachléssigt
werden soll. Eine optimal fliegende Rakete muss dabei wahrend des
Fluges in der Erdatmosphére ihre Langsachse immer ezakt parallel zur
momentanen Bahntangente orientieren, um die aerodynamische Belastung
zu minimieren. Man kann auch sagen, dass der Anstellwinkel praktisch
Null sein muss. Diese Voraussetzung werden wir in den folgenden Kapiteln
immer machen.

Die allgemeine Losung der obigen Gleichung (6.1) ist analytisch nicht
moglich. Selbst im Falle eines exakt senkrechtem Fluges oder g = 0 fiihrt
die Losung auf ein System komplizierter konfluenter hypergeometrischer
Funktionen. Wir miissen also Idealisierungen einfithren. Wir nehmen an,
dass sich die zunehmende Beschleunigung der Rakete mit dem zunehmen-
den Luftwiderstand so kompensieren, dass wir eine konstante effektive
Beschleunigung as der Rakete ldngs der Bahntangente annehmen diirfen.
Die Geschwindigkeit der Rakete soll zudem wesentlich geringer als /g R
sein. Die relevanten Bewegungsgleichungen sind dann einfach (2.9) oder

i’:asz, i/':asg—g. (6.2)

v v

Den mit der Geschwindigkeit zunehmenden Luftwiderstand haben wir
im idealisierten Modell in die mit der Zeit auch zunehmende Raketen-
beschleunigung a, mit einbezogen. Der Winkel § = arctan(y/%) zeigt
wahrend des Fluges sowohl den zeitabhidngigen Neigungswinkel der Rake-
te als auch die identische momentane Neigung der Bahntangente relativ
zur Erdoberflache an. Denn es gilt:

o angle of attack: (Anstellwinkel zur Luftstromung): Winkel zwi-
schen Korperldngsachse und Geschwindigkeitsvektor - bei OBERTH
mit « bezeichnet.

« pitch angle: (Nickwinkel): Winkel zwischen der Korperldngsachse
der Rakete und dem Horizont .

o flight path angle (FPA): (Flugpfadwinkel): Winkel 6 zwischen
dem Geschwindigkeitsvektor der Flugbahn und dem Horizont. § = 0
entspricht horizontalem Flug.

Multiplizieren wir jetzt in (6.2) die erste Gleichung mit ¢, dann die Zweite
mit & und subtrahieren die zweite von der ersten Gleichung, so erhalten



wir wegen (4.5) in Modifikation zu (4.9) schlielich

db
v + g cos[d] = 0. (6.3)

Multiplizieren wir nun in (6.2) die erste Gleichung mit &, die Zweite mit
4 und addieren beide Gleichungen, so ergibt sich

d
CT: = a, — g sin[f). (6.4)
Aufgrund der Kettenregel bei Differentiation folgt weiterhin

dv dv df

Pl Rk sin[6]. (6.5)

Elimination von df/dt durch (6.3) fithrt unmittelbar zu der Differential-
gleichung fir v — vl[d)

g cos[t] % + (as — g sin[d]) v = 0. (6.6)

Division dieser Gleichung durch g cos[f] und Einfiihrung des Parameters

a=— (6.7)

fihrt zu d
CTZ + (e sec[] — tan[]) v = 0. (6.8)

Die Losung dieser Differentialgleichung kann in der Form

v secld)

V0] = Tooclt] + tanf@])"

(6.9)

geschrieben werden. vy bezeichnet hier die Horizontalgeschwindigkeit
der Rakete am Gipfelpunkt der Flugbahn mit § = 0. Der Hodograph der
Geschwindigkeit ergibt sich zu

VH . VH tan[&}

e (sec[d] + tan[g])" Y (secld] + tan(g])*” (6.10)
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Fig. 6.2: Der Hodograph der ungelenkten Flugbahn einer Rakete mit Be-

schleuigungen von 2g bis 4g. Normiert auf die horizontale Geschwindigkeit
vy bei 6 =0.

Mit Hilfe von (6.4) ergeben sich jetzt die drei Differentiale

_vH sec[d]?

dt = = et v (6.11)
2 2

de = -H sec(f] a8, (6.12)

g (secld] + tan[f])2e

_ v sec[f]? tan[6)]
dy = g (sec[d] 4 tan[f])2

de. (6.13)

Mit Hilfe dieser Ausdriicke ist es moglich, die Flugbahn parametrisch als

Funktion der momentanen Neigung © darzustellen. Die Rakete startet

senkrecht, beginnt aber fir a;/g > 2 sofort nach dem Start den gravity

turn und fliegt in einer immer mehr sich dem Boden neigenden Bahn bis

zum Aufprall weiter. Im Einzelnen gilt jetzt fiir die Flugzeit
vy (o + sin[O]) sec[O)]

r=-r (a2 — 1)(sec[O] + tan[O])=

(6.14)



und fiir die Flugbahn in horizontaler

_ vy (20+5in[0]) sec[)
o g (402 —1)(sec[O] + tan[O])2« (6.15)

sowie vertikaler Richtung

B @ (34 4« sin[O] — cos[2 O]) sec[O)?
89 (a2 —1)(sec[O] + tan[O])2

Y (6.16)

Bemerkenswert ist es, dass obige Formeln eine Klasse von Flugbahnen
beschreiben, die mit einem senkrechten Start (© = w/2) mit der Anfangs-
geschwindigkeit 0 am singuldren Startort (x,y) = (0,0) beginnen. Der
Kurvenparameter ist hier der Neigungswinkel —7/2 < © < 7/2. Es wird
anhand der Formeln auch klar, dass a > 1 bzw. as > g erfiillt sein muss,
damit eine Rakete iiberhaupt starten kann. Doch nach dem senkrechten
Start neigt sich die Flugbahn durch den gravity turn sehr schnell aus
der senkrechten in die horizontale Lage. Der immer wdhrende senkrechte
Flug ist hier also ein Trivialfall, der durch die obige Losungsklasse der
entsprechenden Differentialgleichungen nicht beschrieben wird.
Die Gipfelpunkt der Flugbahn ist mit ©® = 0 durch die Ausdriicke

vy o« vy 2a vy 1
g 4a2 -1’ yH_4ga271'

TH =

Ty = ———;

H g a2 — 11
gegeben. Wichtiger als der Gipfelpunkt ist jedoch die Flugzeit (Brennzeit
des Triebwerkes der Congreve Raketen) und die Reichweite der Rakete
bis zum Aufschlag. Der negative Aufschlagwinkel folgt aus der Gleichung

(6.16) zu
sin[@4] =Va2-1-« (6.17)

und ist somit nur vom Beschleunigungsverhéltnis o = as/g abhéngig.
Mit Hilfe des Hodographen ergibt sich dann die Aufschlaggeschwindigkeit

zu
) (2+2a(\/7a271704))a_1.

V3 Va2 —-141— )2

Der Quotient strebt fiir a > 3 relativ schnell gegen die Eulersche Zahl e.
Das heifit, es gilt fiir @ ~ 3 die Abschéitzung va ~ v/evy. Die Flugweite
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Fig. 6.3: Anfangliche Flugbahnen von idealisiert senkrecht startenden Raketen
in Abhdngigkeit unterschiedlicher Beschleunigungen as = o g mit identischen
Gipfelgeschwindigkeiten vy . Von der unteren Flugbahn mit o = 6 geht es in
Schrittweiten von 1 bis zur oberen Bahn mit o« = 2. Deutlich ist zu sehen,
dass bei hohen Beschleunigungen die Rakete effektiv einen ,,Schragstart®
durchfihrt, der durch eine Lafette realisiert werden kann. Nur bei a = 2 kann
man noch von einem nahezu Senkrechtstart mit anschlieffendem , gravity
turn“ sprechen.

w auf ebenen Geldnde 148t sich nun als Funktion von v4 darstellen durch

v %(a + Va2 - 1)>L/z2+_2;x(\/a2 -1- oz). (6.18)

In dhnlicher Weise kénnen wir auch die Flugzeit bis zum Aufschlag durch




die Uberraschend einfache Beziehung

VA

Ty = —
4 gva?—1

(6.19)

darstellen. Bei den Congreve- Raketen zu Beginn des 19ten Jahrhunderts
war die Endgeschwindigkeit sicherlich nicht héher als die Schallgeschwin-
digkeit cs. Mit v4 ~ 300 m/s, g ~ 10m/s? und a ~ 3 erhilt man als
Abschitzung T ~ 12 Sekunden Brenndauer der Raketen. Damit ergibt
sich auch die wichtige Relation zwischen Reichweite w und Flugzeit
(Brenndauer) T' der Rakete zu

9 1
w=—-agT? (1W...), (6.20)

also mit den obigen Daten etwa 1500 m.
Mathematisch interessant ist das Verhalten der Kurve um den Startort
mit 6§ ~ /2. Mit der Skalierung

2 2
x:UiX; y:viy
g

folgt fiir grofie o das Verhalten (o> 1, X — 0)

X 1 e
y~2 (1 71[ } . 21
2(+2an4aX> (6:21)

Man kann hier die interessante Tatsache erkennen, dass Raketen mit sehr
hoher Start-Beschleunigung o > 2 ohne Probleme von einer Lafette einen
Schrigstart durchfihren konnen, wobei sich asymptotisch als niedrigste
Elevation der Winkel ©® = arctan[1/2] ~ 26.4 Grad ergibt.

Uber 100 Jahre nach den lidngs vergessenen Congreve - Raketen iiber
Kopenhagen wiederholte sich am 14. Juli 1941 in der weifirussischen Stadt
Orscha das Geschehen: Plotzlich brach iiber die deutschen Besatzungs-
truppen ein hollisches Feuer los. FRANZ HALDER (1884-1972) berichtete
in seinem Kriegstagebuch: Die Russen setzen eine bisher unbekannte Waf-
fe ein. Fin Feuersturm von Geschossen brannte den Bahnhof von Orscha,
alle Streitkrifte und militdrisches Gerdt nieder. Metall schmolz und die
Erde brannte. Zum erstenmal setzte die rote Armee die bis dahin streng




geheimen Katjuscha - Raketenwerfer BM 8/BM 13 mit Reichweiten von
5500 bis zu 8500 Metern ein. Die Raketen erreichten eine Brennschlussge-
schwindigkeit von etwa 250-350 m/s und schlugen nur wenige Sekunden
nach ihrer Horbarkeit ein. (Stalinorgel). Diese Raketen waren somit die
erste wirksame Weiterentwicklung der Congreve - Raketen von 1807.

6.2 Die Aufstiegsbahn einer Rakete

Eine zentral Frage der Raketenballistik ist das Problem, mit welcher Flug-
bahn man optimal von der Erdoberfliche in eine Erdumlaufbahn gelangt.
Umgekehrt stellte sich bei der Mondlandung 1969 das Problem, wie man
aus einer Kreisbahn oder aus einer Ellipsenbahn um den Mond optimal
durch Raketenbremsung auf diesem Korper landet, der ja von keiner Luft-
hiille umgeben ist. Beide ziemlich komplizierten dynamischen Probleme?
héngen eng miteinander zusammen und sollen hier in einem idealisier-
ten analytischen Modell diskutiert werden. Die Grundgleichungen des
vorhergehenden Kapitels reichen dafiir nicht mehr aus.

HERMANN OBERTH (1894-1989) bezeichnete schon 1929 in seinem
Buch Wege zur Raumschifffahrt diese nach Osten geneigten optimalen
Aufstiegsbahnen als Synergickurven der Rakete ([11])%. Allerdings ent-
spricht diese Synergiekurve nicht exakt der von Ihm vorher definierten
sogenannten Raketenlinie, bei der die Richtung der Raketenldngsachse
immer parallel zur momentanen Bahntangente liegt. Beim Flug durch eine
Atmosphére wird dies durch passive Leitwerke automatisch erreicht. In
einer Fuinote seines Buches von 1929 auf Seite 177 bemerkte er dann auch
([41]): Man hat mir hier entgegengehalten, dass das Raumschiff am besten
auf einer reinen Raketenlinie aufsteigen wiirde, weil dabei dauernd cosfa/
= 1 sei, wahrend bei der Synergiekurve die Dise wiederholt einen Winkel

2Im Oktober 2012 berichtete J. VON PUTTKAMER (1933-2012) bei einem Vortrag in
Darmstadt (ESOC/ESA) einige Anekdoten tiber das Vorgehen in den frithen 1960er
Jahren bei der NASA, komplizierte Aufstiegsbahnen von Raketen mithilfe der
damaligen Rechnertechnik (zunéchst mechanische, dann elektrische Walzenrechner)
zu berechnen.

3Auf Seite 171 seines Werkes von 1929 schreibt OBERTH: Die Kurve, die das Raum-
schiff bei dieser Art des Aufstieges beschreibt, will ich Synergiekurve nennen.
Sie zerfdallt naturgemdf in vier Abschnitte: 1. Gradliniger schrager Aufstieg, 2.
Umbiegung der schrdgen Fahrtrichtung in die Waagerechte, 3. waagerechte Fahrt
bis zur Erreichung der zirkuldren Geschwindigkeit, 4. Von da bis zur Erreichung
der Grundgeschwindigkeit Fahrt auf einer Raketenlinie.



Fig. 6.4: Start der Saturn V (Apollo 11) im Jahre 1969. Wenn die Schallge-
schwindigkeit iberschritten ist, tritt am Flugkdrper ein eigenartiges Phdnomen
auf, die sogenannte Prandtl-Glauert-Kondensationswolke. Es handelt sich
hier um kondensierte Wassertropfen hinter der Uberschall - Schockwelle.

mit der Fahrtrichtung bilden miisse.... OBERTH bevorzugte fiir den Start
einer Rakete eine schrige Aufstiegsbahn, weil dadurch seiner Meinung
nach die Gravitationsverluste etwas vermindert werden. Wir spéter sehen,
dass fiir hohe Anfangsbeschleunigungen der Rakete (FlaRak - Systeme)
diese Forderung tatséchlich sinnvoll ist. Die konsistente Berechnung einer
zunéchst senkrechten Aufstiegsbahn eines Raumschiffes in eine dann hori-
zontale Kreisbahn um die Erde in Form einer reinen “ Raketenlinie” konnte
damals von OBERTH aufgrund mathematischer Schwierigkeiten selbst fiir



eine konstante Raketenbeschleunigung nicht durchgefiithrt werden. Der
folgende Abschnitt wird diese Probleme deutlich aufzeigen.
Die kréftefreie Bewegung einer Rakete folgt der Bewegungsgleichung

p=—99 (6.22)
mgo —qt
Die Gréflen ¢, bedeutet dabei die Ausstromgeschwindigkeit der Gase, ¢
die pro Zeiteinheit ausgestoBlene Masse und mg die Anfangsmasse der
Rakete. Man erhélt fiir die Geschwindigkeit v und den zuriickgelegten
Weg s die bekannten Formel (Formeln von W. MOORE (1813),[37])

mo
v = (4 In [M:|
0 —

- e ()2

Im Falle g = 0 (ohne Gravitationsfeld) gilt also auch

. q { v }
0=cyg— €exp|—|,
mo Cg
woraus folgt, dass die Beschleunigung mit der erzielten Geschwindigkeit
exponentiell ansteigt.

Im Folgenden werden wir fur unsere idealisierte Modellrakete wah-
rend des Fluges eine mittlere konstante Beschleunigung as annehmen.
Allerdings kommt jetzt im Gegensatz zum vorhergehenden Kapitels zur
Gravitation auch noch die Zentrifugalbeschleunigung aufgrund sehr hoher
Geschwindigkeiten hinzu. Allgemeinere Félle, die von den detaillierten
technischen Ausfiihrungen und Massenverlusten der Rakete abhéngen,
miissen immer numerisch integriert werden. Der hohenabhéngige Luft-
widerstand k — k[y] und eventuell vorhandene aerodynamische Krifte
spielen nur in den unteren Atmosphérenschichten eine Rolle und sollen
hier ebenfalls vernachlissigt werden?. Der angle of attack soll somit
immer null sein. Der zeitliche Verlauf dieses Winkels 6 (flight path
angle) zur Bodenfldche wird durch die dynamischen Beschleunigungen

4Der Luftwiderstand in den unteren Atmosphérenschichten der aufsteigenden Rakete
ist fiir das seltsame Phénomen verantwortlich, dass Astronauten (Kosmonauten)
beim plotzlichen Brennschluss der ersten Stufe unerwartet in die Gurte gedriickt
werden - die Rakete also bis zur Ziindung der zweiten Stufe wieder gebremst wird.



Fig. 6.5: Bei der ballistischen Aufstiegsbahn einer Rakete (hier eine russi-
sche Sojus 2-1A vom neuen Kosmodrom Wostotschnij im Jahre 2016) ist der
pitch angle (Neigungswinkel 6) immer exakt gleich dem Winkel des momen-
tanen Geschwindigkeitsvektors (flight path angle) iber dem Erdboden. Die
Schubbeschleunigung an der Rakete wirkt also wie eine inverse Luftreibung.
(Bild: sputnik)

und Geschwindigkeiten der Bahn bestimmt. Man spricht hier auch von
einem Gravity Turn. Der Neigungswinkel der Rakete muss mit einer
aktiven Steuerung stindig nachkorrigiert werden (Gimbaling). Wahrend
der Neigungsphase zeigt der Schubvektor nicht exakt auf den Schwer-
punkt der Rakete. Die optimierte Aufstiegsbahn einer Rakete gehort aus
den oben erwadhnten Griinden zur Klasse der ballistischen Kurven, die
OBERTH im Jahre 1929 als reine Raketenlinien bezeichnet hat.

Fiir eine qualitatives und auch genédhertes quantitatives Verstandnis ist
es wiinschenswert, eine gendherte analytische Darstellung der Aufstiegs-
bahn bis in einen Keplerorbit insbesondere beim Start zu haben und diese
dann mit einer numerischen Integration der exakten Gleichungen zu ver-
gleichen. Dazu miissen die exakten Gleichungen so weit idealisiert werden,
damit eine analytische Integration moglich ist. Als Grundlage benutzen
wir die Modellgleichungen (5.16) und (5.17), in denen aber der Luftwider-
stand durch eine entsprechende entgegengesetzte Beschleunigung ersetzt



wird. Dann erhalten wir die mathematischen Modellgleichungen

= a,- -2 6.23
o 0T R (6.23)
. 12
. Yy xz
= a2+ 6.24
Y a, " + R qg ( )

Dies sind die globalen ballistischen Differentialgleichungen fiir die Ge-
schwindigkeitsénderung und Richtungsénderung einer Rakete in der Néhe
der Erde bei hohen Geschwindigkeiten. Multiplizieren wir nun (6.23) mit
¥, dann (6.24) mit £ und subtrahieren die zweite von der ersten Gleichung,
so erhalten wir wegen (4.5) in Modifikation zu (4.9) schliefilich

do v?
v + (g - R) cos[f] = 0. (6.25)

Multiplizieren wir nun (6.23) mit 4, dann (6.24) mit ¢ und addieren beide
Gleichungen, so ergibt sich

% = a, — g sin[6)]. (6.26)

Aufgrund der Kettenregel bei Differentiation folgt weiterhin

dv  dv db .
i Ik sin[6]. (6.27)
Elimination von df/dt durch (6.25) fuhrt unmittelbar zu der Differential-
gleichung fir v — vl[d)

2
(g - %) cos|d] % + (as — g sin[d]) v = 0. (6.28)
Auch hier erweist es sich wieder als giinstig, anstatt des vertikalen Nei-
gungswinkel 6 die Grofie z gemé$ sin[f] = tanh[z]| einzufiihren. Der
Neigungswinkel 6 der Raketenldngsachse als auch der Bahntangente
der Rakete zum Boden ist dabei durch die GUDERMANN - Funktion
gd[z] = arctan[sinh[z]] gegeben. Denn es gilt

dz

sin[f] = tanh[z],  cos[f] = sech[2], df = cosh[z]’

(6.29)



Fiir die Umkehrung nach der Hilfsvariablen z folgt
z = In[sec[f] + tan[d]]. (6.30)

Beim Start der Rakete ist aber wegen (6.30) z — oco. Der Wertebereich
von 6 ist dann 6 € [0,7/2] und der von z € [0, 00]. Aus (6.29) und (6.30)
folgt nebenbei auch das interessante Integral

/°° 2 _m
o cosh[z] 2

Mit dieser Transformation verwandelt sich (6.28) in

(g _ 1}2) di; + (as — g tanh[z]) v = 0. (6.31)

Wir dividieren diese Gleichung durch v # 0 sowie g und erhalten das

Differential )
v as
o Y aw=— (% _tann .
(1} gR) dv (g tan [z]) dz

Eine Integration dieser Gleichung fithrt zu

In[v?] — U—Q =-2 (as z— lncosh[z]) +C
gR g '

Die Rakete startet nun vertikal bei z = oo und erreicht nach einer gewissen
Zeit in der horizontalen Lage z = 0 die Brennschlussgeschwindigkeit /g R.
Daraus folgt fiir die Integrationskonstante

C=IlgR] -1

Normieren wir die Geschwindigkeit v mit der horizontalen Endgeschwin-

digkeit /g R
v=1+/gR V[, (6.32)
so gelangen wir zu der idealisierten Gleichung
In[V?] - V?=—-1—-2az+2 Incosh[z] (6.33)

fiir die Funktion V[z] einer ballistischen Rakete. Der Parameter « ist

durch
o= — 6.34
( )



definiert. Die Auflésung der transzendenten Gleichung (6.33) nach V2]
gelingt fiir alle z > 0 mit dem oberen Zweig der LAMBERTschen W -
Funktion. Die Losung lautet einfach

V[z]? = ~Wq [—e 17227 cosh[2]?] . (6.35)

Die Variable z ist durch (6.30) als Funktion der Neigung 6 der Rakete
gegeben. Als Funktion von 6 kénnen wir auch

VIOP = -Wo |- (seci;] —l—siz[r?%H])m ' (6.36)

schreiben. Die ungewthnliche Funktion Wy|[z] ist definiert als der obe-
re Zweig der LAMBERTschen Funktion W/[¢], gegeben als Losung der
dquivalenten Funktionalgleichungen

Win| eVl =, W [¢et] = ¢ (6.37)

Im Falle einer Endgeschwindigkeit /g R grofier als die Kreisbahngeschwin-
digkeit tritt die Besonderheit auf, dass die Rakete beim Aufstieg dber
die beabsichtigte Hohe hinausschiefit und erst beim leichten Sinkflug (z
< 0) die endgiiltige horizontale Orbitalgeschwindigkeit /g R erreicht.
Wir betrachten diesen Sonderfall hier nicht ausfiihrlich, weil in dieser
letzten Flugphase der zweite Zweig W_1[¢] der Lambertschen Funktion
genommen werden miisste.

Die Geschwindigkeit v[z] = v[f] ist damit als Funktion von z oder
entsprechend dem Neigungswinkel der Rakete € bekannt. Es wird mit
der Funktion V[f] ein kompliziertes Randwertproblem geldst, da zum
Startzeitpunkt vollig unklar ist, wie die Rakete aus der Vertikalen durch
ein entsprechend gesteuertes Neigungsprogramm mit der horizontalen
Kreisbahngeschwindigkeit /g R in einer Erdumlaufbahn in einer noch
unbekannten Hohe endet. Der Raketenpionier OBERTH bezeichnete Auf-
stiegsbahnen von Raketen mit geringstem Energieaufwand mit dem Wort
Synergiekurven. Die Losungen der obigen Differentialgleichung be-
schreiben allerdings mehr die von ihm postulierten Raketenlinien, bei
denen der Anstellwinkel zur Luftstromung oder zur momentanen Bahn-
tangente immer null ist. Letztendlich handelt es sich also um ballistische
Kurven. Die Funktion V[z] ist jetzt der entscheidende Schliissel, um in
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Fig. 6.6: Hodographen ballistischer Aufstiegsbahnen einer Rakete mit kon-
stanter Beschleunigungen von o = 1 (singuldr; oberste Kurve) bis o = 2
(unterste Kurve) in Schritten von 0.2. Die horizontale (va = &) und die
vertikale (vy = y) Geschwindigkeitskomponente sind in FEinheiten der zu
erreichenden Kreisbahngeschwindigkeit \/g R dargestellt. Die Rakete startet
bei einem Winkel 8 = 90° mit der Geschwindigkeit (va,vy) = (0,0) und
gelangt bei einer horizontalen Neigung von 6 = 0° in eine Umlaufbahn mit
der Kreisbahngeschwindigkeit \/g R. Singuldr ist der Wert a = 1, bei dem die
Rakete die Startrampe nicht verlassen und so auch nicht der ,gravity turn“
in die horizontale Richtung stattfinden kann.

unserem idealisierten analytischen Modell die fiir Aufstiegsbahnen und
auch Mondlandebahnen wichtigen Kenngrofien schnell zu iiberblicken.
Fiir die Geschwindigkeit & tiber Grund folgt jetzt sofort

& =+/g R V]|z] sech[z] = /g R V[0] cos[f (6.38)

Wegen ¢ = & tan[f] folgt fiir die vertikale Geschwindigkeitskomponente

¥ =+/gR V|[z] tanh[z] = /g R V[0] sin[d (6.39)

Mit (6.30) definieren beide Komponenten den Hodographen unserer opti-
malen Raketenaufstiegsbahn; oder - nach OBERTH - den der Raketenlinie.
In Figur (6.6) sind diese fiir fiinf Werte des Parameters a graphisch
dargestellt. Um den zeitlichen Verlauf der Aufstiegsbahn analytisch zu



Fig. 6.7: Die Aufstiegsbahn und die dazu symmetrische Abstiegsbahn der
Mondlandefihre FEagle im Juli 1969 gehérte zur Klasse ballistischer Flugbah-
nen, die trotz fehlendem Luftwiderstand genau berechnet werden mussten. An-
stellwinkel 6 und Schubbeschleunigung waren genau aufeinander abgestimmt,
um aus einer bestimmten Kreisbahn der Hohe H tber der Mondoberflache
zielgenau in einer Entfernung W ldngs der Mondoberfliche mit der Geschwin-
digkeit Null zu landen. (Bild:NASA 1969)

berechnen, transformieren wir zunéichst mit v = /g R’V die Gleichung
(6.31) in
Y
(1-V?) - (a —tanh[z]) V=0 (6.40)

um. Mit der Gleichung (6.26) erhalten wir so

\/%dt = _1_V—‘[,Z2][z] dz. (6.41)

Die Aufstiegszeit der Rakete bis in den waagerechten Flug ergibt sich
daraus durch Integration zu

R [ V[ .
r=\f [ e (612



Das Integral muss numerisch ausgewertet werden.

Eine wichtige Frage betrifft die erreichte Bahnhéhe H der horizontalen
Zielbahn mit der Geschwindigkeit /g R um den Planeten. Mit der Formel
fiir ¢ und (6.41) erhalten wir zunéchst

VI 5 tanh(z] dz. (6.43)

dy— —R —27
v="RiTVE

Damit erhalten wir das wichtige Resultat

H=R /1Y[\j][z]2 tanh[z] dz. (6.44)
0

Diese Bilanzgleichung bestimmt implizit die Stérke der benétigten Schub-
beschleunigung as = a g, um in eine Kreisbahn von vorgeschriebener
Hohe H (H < R) uber einer Planetenoberflache zu gelangen. Umgekehrt
bestimmt diese Gleichung bei einer Mondlandung die Bremsbeschleuni-
gung as, die man in einer Kreisbahn bei vorgegebener Flughthe H iiber
der Mondoberflache zu einer Punktlandung benétigt.

Durch Umkehrung der Reihe nach der Brenndauer T der Triebwerke
und Einsetzen in die obige Formel fir die erreichte Héhe H erhélt man
die gendherte Beziehung

H~ % gT? (6.45)
Hier taucht wieder der ballistische Term g 7?2 /8 der Wurfparabel auf. Die
Hohe H der erreichbaren Kreisbahn iiber der Erdoberfliche hingt in
unserem Modell also nur von der operativen Brenndauer T" der Triebwerke
ab.

Bei den Mondlandungen in den Jahren 1969-1972 bendtigt man eine
weitere wichtige Kenngrofle der Flugbahn: Die Lange des Bahnbogens iiber
der Mondoberflache vom Startpunkt bis zum Eintritt in die Kreisbahn.
Zunéchst gilt wieder mit den Grundgleichungen

V[z]?

de — — R Y *L
=R TN

sech[z] dz. (6.46)



’ o H H[km] \ Wkm] \ T[sec] \ 8H/(gT?) ‘
1.5 593.2 | 2282.3 819.1 0.721
1.6 480.0 | 2119.2 715.9 0.764
1.7 399.4 | 1979.1 | 639.2 0.797
1.8 339.1 | 1857.3 | 579.5 0.824
1.9 292.6 | 1750.3 | 531.4 0.845
2.0 255.7 | 1655.4 | 491.7 0.862
3.0 98.0 | 1079.6 | 290.9 0.944
4.0 52.6 803.8 | 210.4 0.969
5.0 33.0 640.9 | 165.6 0.981

Tab. 6.1: Wichtige Kenndaten fiir eine ballistische Aufstiegsbahn einer
Rakete von der Erdoberfliche ohne Luftwiderstand in eine kreisformige Erd-
umlaufbahn als Funktion der konstanten Schubbeschleunigung o = as/g.
Die Daten wurden mit Hilfe der Integrale (6.44), (6.47) und (6.42) gewon-
nen. Die physikalischen Konstanten sind R = 6371 km und g = 9.81m/s2.
Die drei letzten Daten entsprechen hypersonischen Raketen (,,Awantgard-
Gleiflugkéorper®), deren lenkbare Flugkorper nach Brennschluss mit einem
stark erhitzten Schutzschild in ihr Ziel fliegen.

Wiederum ergibt sich durch eine Integration die Bogenweite W zu
[ VI
0

Auch diese GroBle hiingt nur von « ab. Fiir die zeitliche Anderung des
Neigungswinkels 6 der Rakete (pitch angle = flight path angle) ergibt

sich der Ausdruck
de g 1-V?2[2]
= =, /L Y gech 4
at \/; Vi sechlE (6.48)

Mathematisch interessant ist hier das Verhalten des sogenannten pitch -
over am Startplatz z — oo. Hier gilt mit der asymptotischen Formel fiir

W €]

1 1
V[z]:500 ~ 2 exp [—2 —(a—1) z} (6.49)
und daher
do g
Tl —4+/e 7 expl(a — 2) 2] (6.50)



Fig. 6.8: Die Aufstiegsbahn einer Rakete (Space Shuttle) ist eine genau vor-
gegebene Flugbahn, die durch Schwenkung der Triebwerke (gimbaled thrust)
genau verfolgt wird.

Anhand dieser Formel siecht man deutlich, dass sich am Startplatz
der Rakete Aufstiegsbahnen mit konstanter Schubbeschleunigung a,
grundsétzlich in zwei Bereiche aufteilen: I.) 1 < @ <2 und IL.) @ > 2. Im
ersten Bereich startet die Rakete mit einem ,pitch - over® von Null, im
zweiten Fall beginnt das ,,pitch - over® schon am Startplatz mit einem
singuldren Wert. Hypersonische Raketen mit as > 3 g miissen also schon
zu Beginn sofort in eine ,,Schrigbahn® iibergehen oder gleich in einer
solchen Bahn starten. Am Grenzwert a, = 2¢g (o = 2) gilt

do lg o

Schon 20 Sekunden nach dem take off muss sich so die Rakete mit as = 2 ¢”

schon fast 10 Grad aus der Vertikalen gedreht haben. Aufstiegsbahnen
von schweren Trégerraketen haben daher einen « - Parameter immer
unterhalb von a < 2. Die alte SaturnV - Trégerrakete als auch die neueren
ARIANE-Raketen hielten bzw. halten diese Bedingung tatsdchlich ein.
Um die Flugbahn der Rakete kurz nach dem Start als Funktion der Zeit
analytisch zu beschreiben, gehen wir auf (6.41) zurtick und entwickeln



asymptotisch

[9g= Lexpl-tia-
B dt = 5 OXP { 5T (1-a) z} dz. (6.52)
Das Integral fiir kleine Zeiten ¢ lautet dann (z > 1)

g 1 1

=t — —=+(1- . .

7 o~ 1) exp{ 2+( a)z} (6.53)

In analoger Form ergibt sich aus (6.38) und (6.39) asymptotisch

1
T ~+/gR exp [—2 — az] (6.54)
und ) .
g:ingeXp {—2—1—(1—0()2'] (6.55)

Durch Elimination der Variablen z und durch Einfithrung der dimensi-
onslosen Zeit

g
=4/=t 6.56
r=,/2 (6.56)
erhalten wir im Einzelnen (7 — 0)
F=gR (Vo)™ T [2(a— 1) 75T + .. (6.57)
und
J=vVgR(a-1)7+... (6.58)

Aus der letzteren Gleichung finden durch Integration nach der Zeit ¢
leicht

fzf(a—l)TQ—i—... (659)

oder in physikalischen Einheiten
1 2
ylt] = 3 (as —g)t=+... (6.60)

Dies Resultat hiatte man auch ohne die asymptotische Analyse hin-
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Fig. 6.9: Die Aufstiegsbahn einer Rakete ohne Luftwiderstand im Falle

as = 2g = konstant. Die roten Zahlen bedeuten die Zeit in Sekunden, die
blauen die Geschwindigkeit in Metern pro Sekunde und die orangen Zahlen
den Anstellwinkel der Rakete zum Horizont in Grad. Die Rakete erreicht in
dieser Aufstiegsbahn nach 492 Sekunden eine Kreisbahn in einer Hohe von
etwa 256 km um die Erde.

schreiben kénnen. Schwieriger ist die Integration der x Koordinate. Man
erhélt

2a—1

T 1

1
_= — @ a—1 — a—1
7= 501 [2% Ve] [(a—1)7] (6.61)
Wir fiithren nun einen Index ¢ nach
200 —2 1
= — 1—¢qg= .62
4= 5 —7; q (6.62)

20 —1
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ein. Mit den dimensionslosen Koordinaten

z Y
X == Y =Z 6.63
z 4 (6.63)
kénnen wir eine asymptotische algebraische Gleichung fiir die Aufstiegs-
bahn einer Rakete fiir die Umgebung des Startplatzes angeben. Durch
Elimination von 7 erhalten wir die asymptotische Darstellung

! (1 - q)lq X4 (6.64)

N27q 2e

wobei e die Eulersche Zahl bedeutet. Mit a = 2 ergibt sich zum Beispiel
der Index ¢ = 2/3, fiir a« = 3/2 dagegen g = 1/2. Startet die Rakete also
mit ay = 1.5 g, so sieht ihre idealisierte ballistische Aufstiegsbahn mit
»Gravity Turn“ in den ersten Minuten wie die Funktion ¥ ~ /X /e/2
aus. Es zeigt sich allerdings auch, dass ab a > 3 sich der ¢-Wert immer
néher der Eins nédhert. Das aber bedeutet, dass bei einer hohen Anfangs-
beschleunigung as > g ein Schrigstart der Rakete giinstiger wére als
ein Start aus der Vertikalen. Genau dies hatte ja H. OBERTH in seinen
Biichern fiir eine Synergiekurve vorgeschlagen. Wir kommen auf dieses
Problem bei den FlaRak - Systemen zurtick.

Die obigen Ergebnisse motivieren dazu, eine genauere analytische Rei-
henentwicklung der Aufstiegsbahn zumindest fiir den wichtigen Grenzfall
as = 2 g abzuleiten, bei dem ein Senkrechtstart in jedem Falle sinnvoll ist.
Mit Hilfe von Computeralgebra erhélt man so mit (6.23,6.24) und den
asymptotischen zeitlichen Limiten (6.61) und (6.60) fiir die Aufstiegsbahn
vom Startplatz aus (as = 2g)

461/293/2 5 3263/295/2

5
SRz bt (6.65)
und ) Lo
ylt) = 5 9t - ;]g L (6.66)

Ganz im Geiste von L. EULER konnen wir nun die z[t] - Entwicklung
nach der Zeit ¢ umkehren und in die zweite Gleichung fiir y[t] einsetzen.
Auf diese Weise ergibt sich fiir die ballistische Aufstiegsbahn einer Rakete



mit a; = 2 ¢ in den dimensionslosen Koordinaten (6.63) die Darstellung

v 32/3 ey 34/3 41/3

4(2e)1/3 - 22/35

A (6.67)

Fiir die Neigung 6 der Raketenachse zur Horizontalen (gravity turn) ergibt
sich kurz nach dem Start im Falle a; = 2 g die Zeitentwicklung

3263/2 3/2
:7_4\[,/ t+ S - .. (6.68)

Die idealisierten analytischen Losungen gelten nur fiir den Fall ay =
konstant und ohne hohenabhéngigen Luftwiderstand . Will man diese
Effekte fiir eine detaillierte Berechnung mit einbeziehen, sind nur noch
numerische Modelle sinnvoll. Dabei miissen wir aufgrund der singuldren
Randbedingungen am Startplatz fir die zu erreichende Orbitalgeschwin-
digkeit numerisch in der Zeit rickwdrts rechnen, weil der Startplatz mit
der Randbedingung v[0] = 0 eine Singularitdt mit unbekannten Rand-
bedingungen fiir die zeitliche Ableitung v'[0] darstellt. Dabei muss man
die Endhoéhe H fiir die Kreisbahn so lange variieren, bis die Randbe-
dingungen am Startplatz y[0] = 0 erfiillt sind. Gegeniiber der obigen
analytischen Rechnung ist dieses iterative numerische Rechnen relativ
aufwendig, insbesondere bei zweistufigen Raketen mit unterschiedlichem
Schubverlauf.

6.3 Die optimale Mondlandung

Am 20. Juli 1969 bestand zum erstenmal das Problem, ein Raumfahrzeug
aus einer Kreisbahn oder Ellipsenbahn auf einem fremden Himmelskor-
per zu landen, der keine nennenswerte Atmosphére besitzt. Aus einer
Umlaufbahn mit einer bestimmten Horizontalgeschwindigkeit musste ein
kontrolliertes Bremsmandéver gestartet werden, um exakt mit der ver-
tikalen Geschwindigkeit Null am Boden zu landen. Das mathematisch
Interessante an diesem Vorgang ist auch die Frage, diese Landung mit
einem Minimum an Energieaufwand zu bewerkstelligen. Wir berechnen
mit den Formeln (6.42) und (6.44) die Tabelle (6.2) Hier kann man
schon erkennen, dass aufgrund der Av = a; T Werte der Energieaufwand
fiir eine Landung gréfler wird, wenn die Anfangshohe ansteigt. Darum
startete die Landephase bei Apollo 11 im Periselen (perilune), bei der



’ o H H[m] \ Wkm] \ T[sec] \ Av [m/s] ‘
3.0 || 26414 292 371 1807
3.1 || 24583 283 358 1798
3.2 || 22941 274 345 1790
3.3 || 21463 265 333 1782
3.4 || 20126 257 322 1776
3.5 || 18913 250 312 1770
3.6 || 17809 243 302 1764
3.7 || 16800 236 293 1759
3.8 || 15876 230 285 1755
3.9 || 15028 224 277 1750
4.0 || 14247 218 269 1747

Tab. 6.2: Wichtige Kenndaten fir eine rein ballistische Abstiegsbahn der
Mondfahre von einer Mondumlaufbahn als Funktion der konstanten Schub-
beschleunigung o = as/g. Die Daten wurden mit Hilfe der Integrale (6.44),
(6.47) und (6.42) gewonnen. Die physikalischen Konstanten sind R = 1734
km und g = 1.622m/s>.

die Fahre nur noch eine Hoéhe von etwa 50000 [f] oder etwa 15240 [m]
iiber der Mondoberflache hatte. Bei solch einer Hohe bendtigt man fiir
eine rein ballistische Landung eine Bremsbeschleunigung von o ~ 3.92,
also etwa as ~ 6.34m/s%. Die Flugzeit betrigt nur T ~ 275s. Diese
kurze Zeitspanne entspricht aber keineswegs den historischen Flugdaten
von 1969, bei denen die Flugzeit bis zum touchdown etwas T ~ 714 s
betrug. Die Landestrategie muss somit eine Andere gewesen sein. Wir
wollen anhand der historischen Daten das damalige Vorgehen genauer
rekonstruieren.

In der NASA TM X-58040 vom Januar 1970 sind die wichtigsten
Abstiegsbahndaten des Eagle von Apollo 11 zusammengefasst. In der
Tabelle (6.3) sind die Flugdaten in metrische Einheiten (1 [f] = 0.3048
[m]) gerundet umgerechnet. Um die Flugdaten zu verstehen, betrachten
wir die speziellen Bewegungsgleichungen

:i‘2
% = —a sin[O[t]]; ¥ = a cos[O[t]] + =Y

mit den Anfangsbedingungen

z[0] =0, yl0]=H, &[0] =vs, F[0] = vy



| Event | ¢[m:s] | #[m/s] | g[m/s] | y[m] | Lage |

A - 00:07 - - - -
B 00:00 1695 -1 | 14879 | 92°
C 00:26 1685 -1 | 14851 | 93°
D 02:56 1219 -15 | 13696 | 79°
E 04:18 934 -27 | 11948

F 06:24 444 -32 | 7510

G 06:42 401 -39 | 6902 55°
H 08:26 154 -44 | 2291

I 10:06 21 -5 | 156 10°
J 11:54 0 -1 4

Tab. 6.3: Wichtige historische Kenndaten der Abstiegsbahn der Mondfihre
Eagle von Apollo 11 am 20. Juli 1969. Die Events bedeuten: A: Ullage; B:
Powered descent initiation, C: Throttle to maximum thrust, D: Rotate to
windows-up position, E: LR altitude update, F: Throttle recovery, G: LR
velocity update, H: High gate, I: low gate, J: Touchdown (probe contact).
Unter ,Lage“ ist die Neigung der Mondfdihre zur Vertikalen gemeint.

vy > 0 ist die zum Zeitpunkt ¢t = 0 giiltige Vorwértsgeschwindigkeit,
vy < 0 die Sinkgeschwindigkeit und H die zum Zeitpunkt ¢ = 0 giiltige
Hoéhe. Innerhalb eines bestimmten Zeitfensters nehmen wir a als konstant
an, wiahrend der Lagewinkel © der Mondfihre von der Zeit abhéngig sein
soll. Die Losungen dieser Bewegungsgleichungen setzen wir als Taylorreihe
bis zur dritten Ordnung in der Zeit ¢ an. Wir erhalten

1 1 .
zft] = U;ct—5(1Sin[@]tQ—éacos[G]G)tB—...
1 v\ 2
ylt] = H+vytf§ gfacos[e)]fﬁ 2
1 . 2v,
—5¢ sin[©)] (@—F;L) ...

Die Bahndaten der Flugphase B-F kann man mit diesen Formeln sehr
gut reproduzieren. Als Unbekannte sind a, © und O zum Zeitpunkt ¢t =0
anzusehen. In dieser ersten braking phase bis t = 384s ergeben sich die
best-fit Werte

a=3.07m/s? © =91.8°, © =-0.11°/s.



Diese Ergebnisse entsprechen sehr gut den NASA - Daten beziiglich der
Neigung (Attitude) der Mondfihre zur Vertikalen. Da die Abbremsung im
Periselen stattfand, musste die Fahre kurzfristig einen Neigungswinkel
grofer 90° einnehmen, um die Aufwértsbewegung in der Keplerbahn zu
kompensieren. Bei ¢ = 384s war die Neigung schon auf ©® = 51° gesunken.

Fiur die eigentliche Landephase wollen wir die obigen Bewegungsglei-
chungen weiter idealisieren. Mit R — oo und © = 0 lauten die Lésungen
jetzt

x[t] = vyt — %a sin[@] %, y[t] = H +v,t — % (g9 — a cos[O]) .

Der Neigungswinkel der Mondfiahre zur Vertikalen soll in diesem Modell
also konstant sein. Kurz vor der Bodenberiihrung kann aber die Féhre
trotzdem die Neigung Null haben, weil dann die Bremsbeschleunigung in
x - Richtung nicht vin Haupttriebwerk, sondern von kleinen Steuerdiisen
herriihrt.
Aus der Landebedingung ¢[T7] = 0 folgt aus den obigen Gleichungen
fir die Flugzeit (v, < 0)
v
T, = —4%—. 6.69
L y—a cos[O] (6.69)
Aus der weiteren Bedingung y[77] = 0 folgt fiir die notwendige vertikale

Bremsbeschleunigung )
v

— Y
a cos[®] =g+ 5 H (6.70)
Wird a cos[©] wieder in die Flugzeit T}, eingesetzt, folgt (v, < 0)
2H

Uy

Ty, = (6.71)
Aus der Bedingung 4[T7,] = 0 folgen fiir den Anstellwinkel die Bedingun-

en
& Vg Uy

a sin[@] = 5 o (6.72)
und so mit dem Ausdruck fiir a cos[O]
tan[@] = — 2 (6.73)

_2gH+v§.



Fig. 6.11: Die Mondfihre ,,Eagle“ kurz nach der Trennung von der Kom-
mandokapsel von Apollo 11. Bei der Abstiegsbahn der Mondfihre war in der
Endphase der Bremsstrahl nicht parallel zum momentanen Geschwindigkeits-
vektor.

Hieraus folgt fiir jede Flugsituation der Neigungswinkel der Landeféhre
zur Vertikalen entgegen der Flugrichtung. Die Bremsbeschleunigung folgt
schlieBlich aus

a (29H+v§)2 + v2v2. (6.74)

T 2H
Es ist nicht weiter iiberraschend, dass die eigentliche Flugbahn in diesem
Modell eine nach unten geneigte Gerade mit der Steigung (Gleitverhéltnis)
von vy /v, ist. Dies sieht man ein, wenn die Zeit ¢ in den Ausdriicken fiir
z[t] und y[t] eliminiert wird. Denn dann gilt bis in quadratische Ndherung

Ug § — AUy cos[O] —av, sin[O] ,
22—

y:H+’Uin7

. 53 (6.75)



In der Landephase gilt aber nach den obigen Gleichungen
avg cos[O] + avy, sin[O] = v, g, (6.76)

so dass die Mondfdhre in der letzten Minuten vor der Landung einen
Gleitflug der Form
y=H+ Ly (6.77)
x
durchfiihrte. Dies 148t sich an Hand der Flugdaten verifizieren.
Als Ma#f fiir den Treibstoffverbrauch (Energieaufwand) kénnen wir das
Produkt aus Bremsbeschleunigung und Flugzeit ansehen. Man erhélt

49% H?

2
Uy

a’Tf =4gH + v +v) + (6.78)

Anhand dieser Beziehung sieht man, dass zu Beginn des Abstieges sowohl

eine zu kleine als auch eine zu grofie Sinkgeschwindigkeit v, ungiinstig
sind. Das Optimum liegt bei

vy~ /29 H. (6.79)

Der Bremsvorgang diirfte bei der Mondlandung also erst dann beginnen,
wenn die Sinkgeschwindigkeit v, in der Hohe H ungefihr gleich den Wert
V2 g H erreicht hat. Doch ist die optimale Variante aus Sicherheitsgriin-
den ungiinstig.

Die obigen Formeln fiir die Landephase versagen, wenn die Sinkge-
schwindigkeit v, der Féahre zu Beginn fast Null ist, weil dann die Brem-
striebwerke sie in der Schwebe halten wiirden. Darum betrachten wir zum
Abschluss noch einen Landemodus, bei dem sich zu Beginn die Mondféhre
in einer Hohe H mit einer reinen Horizontalgeschwindigkeit von v, = vg
bewegt. Die Sinkgeschwindigkeit v, soll also zu Beginn null sein. Ohne
Bremsung wiirde die Kapsel in einer Parabelbahn zu Boden stiirzen. Eine
konstant wirkende Bremsbeschleunigung soll jetzt so bestimmt werden,
dass nach einer gewissen Zeit die Fahre vertikal auf dem Mond landen
kann. Wir machen dabei die Approximation vy < /g R. Dann gilt mit
u? << Rin (6.31)

Viz]=e %+ ... (6.80)



Wir beriicksichtigen hier nur den ersten Term und erhalten fiir die Diffe-
rentiale der Flugzeit dt, der Weite dx und der Hohe dy

02

dr = —-Le72*% cosh[z]dz,
g
02

dy = ——e72%% sinh(22]dz,
g
Vo _

dt = ——e % cosh[z]dz.
g

Daraus folgen mit o = a4/g durch Integration von z = oo nach z = 0 die
Bahndaten

02 2a v2 1
w=2_"—_ =-0 . 6.81
g 4az2-1’ 4g a? -1 (6:81)
und die Flugzeit
Vo «
T, =— — .
g a®—1

Mit der Formel (6.81) fiir die Hohe H ergibt sich als erforderliche Brems-
beschleunigung as = a g

2

v,
=4/1 0_. .82
a + 1gH (6.82)
Fiir die Flugzeit erhalten wir so
H 49 H
T, =2,]— (1 + 29 ) (6.83)
g Yo

Das Produkt aus as und 7T, bestimmt wieder den Energieaufwand des
Landevorganges. Man erhilt
49gH

Qg TL =g + . (684)
Vo

Ahnlich wie im vorhergehenden Modell eines Gleitfluges existiert auch
hier eine optimale Relation zwischen der Horizontalgeschwindigkeit vg
und der Hohe H. Der Energieaufwand (Treibstoffverbrauch) ist dann
minimal, wenn die Bedingung

v =2/ gH. (6.85)
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Fig. 6.12: FEine optimale Abstiegsbahn aus 5000 m Héhe auf den Mond, bei
der die Bremsbeschleunigung immer tangential zur Bahnkurve ausgerichtet
ist. Die roten Zahlen bedeuten die Zeit in Sekunden, die blauen Zahlen die
Vorwdrts - und die Sinkgeschwindigkeit in m/s. Mit vo = 2+v/g H ~ 180m/s
muss hier as = /2 g sein. Die Forderung zwischen vo und H kann aber in
der Realitdt nicht erfillt werden. Die Oberflichenbeschleunigung auf dem
Mond ist im Mittel g = 1.622m/s>.

erfillt ist. Die Bremsbeschleunigung muss dann
as=v2g (6.86)
und die dazugehorige Flugzeit

Ty, =24 — 6.87
L p (6.87)

betragen.

6.4 Der Max Q Punkt

Eine letzte wichtige Frage beziiglich der Aufstiegsbahn einer Rakete kon-
nen wir noch mit Hilfe eines einfachen analytischen Modelles beantworten:



In welcher Héhe erfihrt die Rakete beim Aufstieqg durch die Luftreibung
den mazximalen aerodynamischen Staudruck ¢ Von welchen Parametern
hingt diese kritische Hohe und ihr zugehoriger kritische Staudruck ab?.
Diese wichtige Stelle in der Aufstiegsbahn nennt man auch den Max Q
Punkt. Er liegt meistens in einer Héhe von 10 - 15 km.

Zur Abschéatzung idealisieren wir die Aufstiegsbahn im unteren Bereich
durch eine zur Erdoberfliche senkrechte gerade Linie. Die dafiir geeignete
Differentialgleichung entnehmen wir dem Kapitel iiber den Senkrecht-
schufl. Mit (4.227) gilt dann fiir die Aufstiegsgeschwindigkeit v[h] einer
Rakete mit konstanter effektiver Schubbeschleunigung a.y s

d
v CTZ +k exp[—h/Hg] v* = acs;. (6.88)

Auch hier fithren wir die neue Héhenvariable n

v, B __dn
T Hg

" (6.89)

ein. Die Differentialgleichung fiir die idealisierte senkrechte Aufstiegsbahn
einer Rakete mit Luftwiderstand lautet dann

d H
U—U—k;HSUQ—Fiae” 5

- =0. (6.90)

Thre Losung mit der Anfangsbedingung v[1] = 0 lautet fiir positiv defi-
nierte Aufwartsgeschwindigkeit

v[n] = \/2aes; Hse "5 \/Ei[-2k Hg| — Ei[-2k Hs 7] (6.91)

Die Funktion Ei[z] ist wiederum durch den Cauchy - Hauptwert des

Integrals
z Lt
mm:/ %ﬁ

— 00

definiert. Analytische Untersuchungen zeigen nun das bemerkenswerte
Resultat, dass im Grenzfall £ — 0 der Ausdruck

k exp [—y/Hs] v[y]?

unabhéngig von der Schubbeschleunigung a, in der Héhe Hg = Hg
maximal wird. Im Falle k Hg = 1 gilt immer noch Hg = 0.82 Hg. Mit



R
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Fig. 6.13: Das moderne russische S400 - Triumf FlaRak System. Die Rakete
wird vertikal durch ein Gas-Katapult in etwa 30m Hdéhe geschleudert, wird
dann um einen bestimmten Winkel gedreht und beschleunigt nach Zindung
des Feststofftriebwerkes sehr schnell auf eine Geschwindigkeit von mehr als
2500m/s.

Hg ~ 8 km liegt dies etwas unterhalb den in der Literatur angegeben Wer-
ten. Fiir die Geschwindigkeit v[Hg] erhélt man Werte, die in der Néhe der
kritischen Schallgeschwindigkeit der entsprechenden Atmosphére liegen.
Generell liegt somit die maximale Beanspruchung beim Uberschreiten
der Schallgeschwindigkeit.

6.5 Die Kinematik einer Flugabwehrrakete

Eine Boden - Luft Rakete zur Abwehr eines angreifenden Ziels (FlaRak)
muss sehr schnell in einen gewissen Hohenbereich mit einer extrem groflen
Geschwindigkeit gelangen. Dabei ist die Brenndauer der einstufigen Ra-
kete auf eine relativ kurze Zeit beschréankt. Das heute modernste FlaRak
System ist das S400 Triumf System (NATO Code SA-21 Growler) aus der
russischen Féderation. Das System kann mindestens vier verschiedene
Raketentypen mit unterschiedlichen Reichweiten abfeuern. Es sollen in
diesem Abschnitt die einfachsten Grundgleichungen fiir die Verfolgung
eines Ziels aufgestellt werden. Bezeichnen wir mit dem Vektor ry[t] die Po-
sition der Rakete, mit ry[t] die Position des Zieles, so lautet die einfachste



Verfolgungsgleichung

I =ve; e= 2711 (6.92)
ry — 1y
v — o[t] ist hier die zeitabhédngige Geschwindigkeit der Rakete. Durch
den Einheitsvektor e zeigt der Geschwindigkeitsvektor der Rakete stets
auf das Ziel. Um die Beschleunigungen zu analysieren, berechnen wir

¥y =ae+vé, Ti=je+2aé&+vé. (6.93)

Die GroBe j — j[t] bezeichnet den Ruck (jerk), also die Anderung der
Beschleunigung. Man sieht, dass bei einer FlaRak die Richtungsdnderung
€ sehr wesentlich ist. Weiterhin gilt

I"l X '1:1 = U2 (e X é) (694)
Damit 148t sich die Torsion

(exé)oé
T= 6.95
vle x &2 (6.95)
der Bahnkurve berechnen. Je nach Vorzeichen von 7 spricht man von
rechts - oder links-wendigen Flugkurven. Ohne entsprechende aerodyna-
mische Leitfligel vorne und/oder hinten konnen Raketen diese Wendigkeit
nicht erreichen.

6.6 Die vertikale Aufstiegsbahn

In einem vorhergehenden Kapitel haben wir die Aufstiegsbahn einer Ra-
kete in eine kreisformige Umlaufbahn um die Erde in einem idealisierten
Modell betrachtet. Dabei wurde angenommen, dass sich die Schwere-
beschleunigung g mit der Héhe H vom Erdboden nicht &ndert. Diese
Vereinfachung soll nun fiir den Spezialfall einer vertikalen Aufstiegsbahn
einer Rakete fallengelassen werden. Die Bewegungsgleichung entlang des
Radius r vom Erdmittelpunkt lautet jetzt

Fea,—g <R)2 , (6.96)

r



in der wieder ag die als konstant angenommene Schubbeschleunigung der
Rakete, g die Schwerebeschleunigung an der Erdoberfliche und R den
Erdradius bezeichnen. Multiplikation der Gleichung mit 7 und Integration
nach der Zeit fiihrt zunichst zu

1 R?

— it =asr+g— + 0. (6.97)

2 r
Die Integrationskonstante ergibt sich aus der Randbedingung, dass zum
Startzeitpunkt ¢ = 0 die Geschwindigkeit der Rakete Null ist. Damit
erhalten wir

7'“2—2as(7'—R)—|—29R<1f—1>. (6.98)

Wir nehmen jetzt an, dass in der Héhe Hj, iiber dem Erdboden die Rakete
Brennschluss hat. Die dann erzielte vertikale Geschwindigkeit v, ergibt
sich zu

R
2 _ _
vk—2asHb+2gR( I 1). (6.99)

Nach Erreichen dieser Hohe Hj, fliegt die Rakete noch ohne Antrieb bis
zur ihrer Gipfelhohe H weiter und fallt dann im freien Fall wieder zum
Erdboden zuriick. Energetisch fiihrt dies auf die alternative Bedingung

R R
2 _9 — ) 1
=29 R\ e T R A (6.100)

Durch Differenzbildung ergibt sich so die wichtige Relation

R
. Hy = 1-— . 101
cotiy=g (1= 537 ) (6.101)

Die energetische Bedeutung dieser Relation ist offensichtlich. Aus einer
bekannten Gipfelhohe einer Rakete beim Senkrechtsflug kénnen wir also
auf das Produkt aus Schubbeschleunigung a; und Brennschlusshéhe Hy
schlieflen.

Eine weitere Bedingung ergibt sich aus der gesamten Flugzeit der
Rakete vom Start bis zum Wiederaufprall auf der Erdoberfliche. Die



erste Zeitspanne T} ist die Brenndauer der Raketentriebwerke bis in die
Hohe Hp. Mit Hilfe von (6.98) erhélt man hierfiir das Integral

Hy,
- [ _VE(t+uwdu (6.102)

0 \/Qu(as—g-i-asu).

Bei Hohen Hj bis etwa 1000 km ldsst sich das Integral bis auf wenige
Sekunden durch den Ausdruck

2 H,

as —4g

(6.103)

approximieren. Die weiteren Zeitabschnitte T bis zum Gipfelpunkt und
T3 bis zum Aufprall kénnen einfach mit Hilfe des Differentials

dr
Jﬁ:vmdt
r R+H

berechnet werden. Wir erhalten im Einzelnen

. \/@(\/(MHIJ)(Hbe)+(R+H>arctan[ )

29R
\ EEE (\/RiHJr (R + H)arctan {,/%})
T3 = .
’ V29 R
Analytisch kompakter kénnen wir mit der hypergeometrischen Funktion
auch
2(H — Hy) H H-H
T, = — (1+ E) oF, [_%,%; 8 R+Hb} (6.104)
und

[2H H -
T3 = 7 (1 + E) 2F1 [_%7 %? %; MLH} (6'105)

schreiben. Die gesamte Flugzeit ist somit 7' =Ty + 15 + T5.
Die Formeln sollen nun an zwei Testfliigen der Nordkoreanischen zwei-
stufigen ballistischen Raketen Hwasong-14 und Hwasong-15 aus dem



Jahre 2017 erprobt werden. Beide Raketen flogen zwar nicht in einer ex-
akten vertikalen Flugbahn, doch bei einem H : W Verhaltnis von etwa 4:1
oder 5:1 ist die vertikale Bahn schon eine sehr gute Approximation. Am
17. Juli 2017 erreichte eine Hwasong-14 eine Gipfelhthe von H = 3725
km. Die gesamte Flugzeit bis zum Aufschlag im Japanischen Meer betrug
T ~ 2832 s. Mit R = 6371 km und g = 9.81m/s? entspricht diese
Gipfelhohe H = 3725 km einer reinen ballistischen Flugzeit von

275 ~ 2581 s

Die Differenz zur langeren Flugzeit von 2832 Sekunden muss im Wesentli-
chen auf die Beschleunigungsphase der Rakete beim Start zuriickzufithren
sein. Eine konsistente Losung der Gleichungen (6.101) mit den drei Zeit-
abschnitten fithrt auf die eindeutigen Parameter

as ~ 21 m/s?; Hy, ~ 1100 km; T, ~435s

Am 28. November 2017 erreichte eine neu entwickelte Hwasong-15 eine
Gipfelh6he von H ~ 4475 km. Die gesamte Flugzeit bis zum Aufschlag
im Japanischen Meer betrug diesmal T' ~ 3180 s. Die reine ballistische
Boden-Boden Flugzeit fiir diese Hohe betragt

275 ~ 3012s.

Aus der Differenz ergeben sich jetzt die Parameter
as ~ 29m/s?; Hy, ~ 897 km; T, ~ 304 s

Deutlich ist zu erkennen, dass die beiden Stufen der Hwasong-15 im
Mittel mit as ~ 3 g beschleunigen, also wesentlich stédrker als die der
Huwasong-14 mit etwa as ~ 2 g sind. Auffillig ist auch die wesentlich
kiirzere Gesamt-Brenndauer gegeniiber den Hwasong-14 Triebwerken.

Beim vertikalen Raketenflug des Amazon-Milliardérs J. BEzOS im Juli
2021 in der Raumkapsel New Shepard fiir Weltraumtouristen in Héhen
von iiber 100 km kénnen wir in den obigen Formel die Abnahme von g
in guter Ndherung vernachléssigen. Fiir die Brennschlussgeschwindigkeit
ergibt sich bei angenommenen konstanten ag

1
vp = (as —g)Ty; Hy= 3 (as — g) TE. (6.106)



Elimination von Ty fithrt so auf

2 1
H, =%t ) 6.107
b 2g a—1 ( )

Fiir die Gipfelhohe ergibt sich analog

2
vy«

== . 6.108

9 2ga—1 ( )
Das Verhaltnis von Gipfelhohe H, und Brennschlusshohe Hy, ist in diesem
idealisierten Modell somit genau « = as/g. Die gesamte Flugzeit ohne

Luftwiderstand entsprache dem Ausdruck

) 1 «
TF:i 1+ + .
g a—1 a—1

Mit Luftwiderstand muss der Wurzelausdruck durch den Faktor in (4.240)
korrigiert werden. Diese Korrektur kann die Missionsdauer um den Faktor
2 erhohen.

6.7 Die Keplerbahn

Wie weit kann eine ballistische Interkontinentalrakete nach dem Brenn-
schluss der letzten Stufe fliegen? Mit den Formeln der Wurfparabel kénnen
wir das nicht mehr genau genug abschétzen, da zwar iiber 100 km Hohe der
Luftwiderstand praktisch verschwindet, dafiir aber das Gravitationsfeld
kein konstantes Beschleunigungsfeld mehr darstellt und die Erdoberfliche
gekriimmt erscheint. Die Rakete bewegt sich nun bei Geschwindigkeiten
von etwa 6 km /s auf einer Keplerschen Ellipse, und es besteht die Aufgabe,
die Formel (3.3) als Grenzfall einer allgemeineren Beziehung aufzufassen.
Dies Problem hat schon I. NEWTON in seinem Hauptwerk 1687 andisku-
tiert. Als neue Grofle fihre man jetzt die Kreisbahngeschwindigkeit vy
eines masselosen Korpers um die Erdkugel mit der Masse M im Abstand
R ein. Fiir diese gilt (G = Gravitationskonstante; g = G M/R?)

o ,/GTM =yR (6.109)



Hat nun eine Rakete nach Brennschluss im Abstand R vom Erdmittel-
punkt die Geschwindigkeit vg und den Abgangswinkel © (Elevationswin-
kel), so besteht die Aufgabe, diese lokalen Parameter mit den globalen
Bahnkonstanten der Keplerellipse zu verkniipfen. Man kann so vorgehen:
In Polarkoordinaten (r, x) lautet die Ellipsengleichung

p
=— 6.110
= T (6.110)
X = 0 bedeutet hier das Apogdum der Bahn (siehe Fig. 6.14). Mit
dem ganzen Bogenwinkel ¢ und dem Erdradius R erhilt man die erste
geometrische Bedingung

R— p

e (6.111)

Andererseits gilt fiir das Quadrat der Geschwindigkeit in einer Keplerel-

lipse
v =/GM (2—1>, (6.112)
T a

wo G die Gravitationskonstante, M die Masse des Planeten und a die
grofle Halbachse der Ellipse bedeuten. Fiir den Bahnparameter gilt au-
Berdem p = a (1 — €?). Mit dem Geschwindigkeitsverhiltnis

Vo Vo

Y ok = Vi ( )

erhalt man so eine dynamische Bedingung

A2 = g (1 —2€ cos[p/2] + €%) . (6.114)

Aus (6.111) und (6.114) folgt die wichtige Bedingung
Y2 =1+€—(2—77) e cos[p/2]. (6.115)

FEine zweite geometrische Bedingung entsteht durch den an der Erdoberfla-
che giiltigen Elevationswinkel © und die lokale Neigung der Bahntangente
gegeniiber dem Radiusvektor. Mathematisch lautet die Bedingung

(6.116)



Mit Hilfe der Ellipsengleichung folgt daraus

tan[6] = € sinfp/2]

= T e/ (6.117)

Aus (6.114) und (6.117) kann man € eliminieren und erhélt eine Bestim-
mungsgleichung fiir den Bahnbogen ¢ und damit auch fiir die Wurfweite
W =Ry

(2 =) sinfp/2] = 7* sin(20 + ¢/2). (6.118)
Auflésen nach ¢ fihrt zu
2 .
© vg sin[2 O]
5= A1
tan [2} 2(g R — vZ cos[O]?) (6.119)

Dieser Ausdruck ist die NEWTON’sche Erweiterung der Beziehung (3.3) —
nun aber fiir sehr hohe Abgangsgeschwindigkeiten, um auch den Einfluss
der Erdkrimmung und die Abnahme der Erdbeschleunigung mit der Hohe
zu berticksichtigen. Die Wurfparabel ist jetzt der lokale Grenzfall einer
Keplerschen Ellipse geworden. Die Wurfweite W ldngs der Kugeloberfliche
der Erde ist die Bogenlédnge

W = Ro. (6.120)

Durch eine Reihenentwicklung nach v und ¢ = W/R lisst sich die
Korrespondenz beider Formeln leicht veranschaulichen. Man erhélt mit
(6.119)
2
W = %0 sin[20] (1472 cos[©* +...) (6.121)

Im Falle v — 0 erhalten wir wieder die klassische Torricelli - Galilei
Formel der Wurfweite.

Um die Gipfelhohe H der Bahn im Apogdum der Bahn (Erdferne)
iiber dem Erdboden zu berechnen, benétigen wir noch die restlichen zwei
globalen Konstanten der Keplerbahn, nédmlich die Exzentrizitdt ¢ und
den Bahnparameter p. Es gilt

€ = \/1—(2—72)72 cos[0]2,
p = 7R cos[O,
o« = 2 (6.122)

2—792



Fig. 6.14: Die Wurfparabel auf der Erdoberfliche als Grenzfall einer Kep-
ler’schen Ellipse um den Erdmittelpunkt. Die Gipfelhohe H ist durch die
Formel (6.123), die Wurfweite W = Ry durch die Formel (6.119) berechen-
bar. Der Elevationswinkel © ist beim Abschussort und Zielort identisch. Bet
einer optimalen Flugbahn gilt die Beziechung © = (m — ¢)/4. Schon 1686
hat I. NEWTON dhnliche Betrachtungen angestellt.

Fiir v = 0 folgt zum Beispiel fiir die Bahnhalbachse a = R/2. Dies ist kein
Paradoxon, denn man denkt sich ja die ganze Masse im Erdmittelpunkt
vereinigt. Die Situation ist also nicht identisch mit einem Stein, der in
einen Schacht fallen wiirde, der durch die ganze Erde bis auf die andere
Seite getrieben wére.

Mit den obigen Formeln ergibt sich die Gipfelhohe H im Apogdum (=
Erdferne) der Bahn {iber dem Erdboden zu

H=R (\/1 ~2-7) ;2_C32[9]2 —- 72)) : (6.123)




Eine Reihenentwicklung fiihrt hier auf den Ausdruck

2
H= ;}—; sin[©)? (1 + 372 (3 + cos[20]) + .. ) . (6.124)
Auch hier erkennt man wieder vor der groflen Klammer den klassischen
Term der Wurfparabel. Will man fir vorgegebene Werte von H und W
einer ballistischen Flugbahn den Abgangswinkel ©® und die Abgangsge-
schwindigkeit vy berechnen, so miissen zunéchst die Formeln (6.119) und
(6.123) umgeschrieben werden. Wir setzen

Vo (¥ . v
N = ; COS[@} = i; SIH[@] = ’U—Z; vy = \/m

und erhalten

3

w1l _ Uz Uy
tan[ﬁ} = gR— 02’
x
Ho_
R

gR—0I =2+ /(gR—02)? +0202

Die Wurzel im zweiten Ausdruck kann aber durch die Wurfweite W der
ersten Formel eliminiert werden. So erhalten wir vereinfacht

Wi _ Uz Uy
tan [ﬁ] = m,
xr
Ho_ .
R gR—v2 =02+ v, vy csc[55]

Dieses Gleichungspaar ist von quadratischer Ordnung in v, und v,. Die
positive Losung lautet

2 H
vy = gR(E+H) S sin {W] , (6.125)
H +2Rsin [ Y] AR

2
v = 29gRH ——5y oS [g] (6.126)
(H+R) <H+2R sin [ %] )

Daraus folgt fiir die Abgangsgeschwindigkeit

vo= |22 (omir(1- &l -] (6.127)
R+H H+2R sin [X]




Im Grenzfall W — 0 folgt hieraus einfach

2gRH
=4/ . 12
R+H (6.128)

Diese Formel reicht in den meisten Fallen aus, um die maximale kinetische
Energie pro Masse einer ballistischen Rakete aus ihrer erreichten Gip-
felhohe H ohne Beriicksichtigung der Flugweite W abzuschétzen. Diese
Formel folgt auch aus (6.100) im Falle H, = 0. Fiir den Abgangswinkel
O erhalten wir schliellich

Vo

tan0] = % = L o {W] (6.129)

Schwieriger ist die Berechnung der Flugzeit. Wir benotigen dazu den
Fléachensatz der gravitativen Zentralbewegung. Man erhélt mit der Rand-
bedingung am Startort der Rakete

rx]? % = R cos[O)]. (6.130)

Mit der Bahngleichung (6.110) ergibt so zunéchst fiir die Flugzeit das

Integral
R /2 dx
T=2,/— 3cos@‘o’/ —_ 6.131
Vo O Toceomppe O

Die Auswertung fiihrt zu

R 20 v sin[©)]
T=24— + ) 6.132
Vo [va—pp "2 (o1
wobei die GroBle ® durch
_ [1+e ®
tan[®] = . tan {Z} (6.133)

gegeben ist. Die Exzentrizitit e folgt aus (6.122), der Winkel ¢ aus (6.119).
Fiir kleine ~ erhalten genéhert fiir die Flugzeit

T:2%0 sin[O] {1+ é(5+cos[2®])72+...} (6.134)

Der erste Term stimmt mit der Wurfparabel wieder iiberein.



6.8 Die optimale Flugbahn

Die im vorhergehenden Abschnitt entwickelten Formeln gelten fiir belie-
bige v = vy/v/g R und beliebige Elevationswinkel ©. Doch wie bei der
Wurfparabel ist auch bei der Raketenballistik {iber grofie Entfernungen
die Hauptfrage, bei welchem Elevationswinkel © unter Voraussetzung
konstanter ,,Brennschlussgeschwindigkeit® mazimale Flugweite erreicht
wird. Oder anders ausgedriickt: Bei minimalem Energieaufwand die ma-
ximale Zieldistanz erreichen. Mathematisch bedeutet dies, bei konstanten
v in (6.119) den Elevationswinkel ©,, maximaler Winkeldistanz ¢ zu
finden. Man erhélt sehr einfach das Resultat

1
tan[O,,] = /1 —~2; cos[On,] = ok (6.135)
-7

Fiir v — 0 folgt wieder das klassische Resultat ©,, = /4 (45 Grad) von
TARTAGLIA und TORRICELLI. Fur v — 1 folgt hieraus ©,, — 0, also
horizontale Flugbahn (Kreisbahn) (Erdsatelliten). Fiir die optimale
Bahnexzentrizitat gilt dann

em =1 -2 (6.136)

Die dazugehorige maximale Bogenweite um die Erdkugel lautet

2

sin {‘%’"} =5 . = (6.137)

Setzt man hier in 7 die Anfangsgeschwindigkeit (6.128) ein, so folgt

einfach "
. SOm:|

— | ==. 6.138

S [ 2] R (6.138)

Eine Rakete, die in einem Vertikalaufstieg die Gipfelhéhe H iiber dem

Erdboden erreicht, kann also in einer optimalen ballistischen Flugbahn

die Weite W,

Wy, = 2 R arcsin [I;ﬂ (6.139)

léngs des Erdumfangs erreichen. Fiir die koreanische Rakete Hwasong-
15 erhalten wir zum Beispiel mit H ~ 4475 km die maximale Weite
Wi ~ 9923 km - ohne Berticksichtigung der Erdrotation.



Fig. 6.15: FEine ballistische RSM-56 Bulava Rakete nach dem Start aus
einem untergetauchten U-Boot der russischen Borei - Klasse. Reichweite bis
zu 8500 km. (credit: wikimedia.commons)

Alternativ kénnen wir (6.137) auch

1—sm[“’7’"}_ T om] 5

Om = : (6.141)

Man kann so fiir die optimale Flugbahn einer Rakete den Satz ausspre-
chen:

Bei einer optimalen ballistischen Flugbahn einer Interkonti-
nentalrakete muss die Summe aus dem vierfachen Elevations-
winkel beim Start und dem Grofkreiswinkel vom Startpunkt
zum Zielpunkt langs der Erdoberfliche immer 180 Grad be-
tragen.

Die dazugehorige minimale Geschwindigkeit folgt aus

= s [”] sin [£]. (6.142)



Fir ¢ — 7 wird ©,, — 0 und ~,, — 1. Die Antipoden beziiglich des
eigenen Standortes sind mit einer ballistischen Rakete also sehr schlecht
zu erreichen. Fihren wir die Lédnge der Sehne S

S =2R sin [%"] (6.143)

vom Startort zum Zielort ein, so kénnen wir auch

2gRS

2R+ S

schreiben. Die Steighohe bei einer optimalen Flugbahn betragt

Hlp] = V2 R sin E - %] sin [ﬂ (6.145)

(6.144)

Vom =

Mit der Sehne S ergibt sich dann

Hs) = (ViRE — 58— (2R~ 5)). (6.146)

Unter der Schar optimaler Flugbahnen mit unterschiedlichen Weiten ¢
erreicht die Bahn mit ¢ = 7/2 die absolut grofite Steighdhe. Sie
betragt
. [m2 _R
Hr/2) = V2R sin [g} =2 (v2-1). (6.147)
Mit dem Erdradius R = 6371 km ergibt sich so fiir die Maximalhthe
aller optimalen Flugbahnen

H[p/2] ~ 1319 km (6.148)

Keine ballistische Rakete sollte eine Flugbahn mit einer gréBeren Hohe
aufweisen. Die Reichweite bei dieser Maximalhohe entspricht dabei genau
1/4 des Erdumfanges.

Die Gleichung fiir diese Schar optimaler Keplerbahnen bei vorgegebener
Weite W lautet

(6.149)

Der Punkt ¢ = 0 ist dabei der idealisierte Abgangsort der Rakete. In
Abbildung (6.16) sind einige dieser Bahnbogen graphisch dargestellt.



Fig. 6.16: Optimale Flugbahnen einer Interkontinentalrakete fiir Reichweiten
von bis zu 10000 km (1/4 Erdumfang). Je weiter das Ziel, desto kleiner ist
der optimale Neigungswinkel der Rakete bei Brennschluss.

Es verbleibt noch die Flugzeit der optimalen Bahnen zu berechnen.
Aus (6.132) folgt zunéchst

R 2 arctan (ﬂ) +94y/1-192
' \ﬁ V277

(6.150)

Die Grofie v hdngt mit der optimalen Elevation ¢,, bei Brennschluss
durch die Relation (6.140) zusammen. Fithren wir hier wieder die Lénge
der Sehne S (6.143) vom Startort zum Zielort ein, so gilt mit Hilfe der
hypergeometrischen Funktion alternativ

29 s <



Im Falle S/R <« 1 ist die Sehne S mit der Wurfweite W léngs der
Erdoberfliche vergleichbar und wir erhalten im Limes das Ergebnis
V2W/g fir die Flugzeit einer optimalen Wurfparabel mit der Elevation
© = 45°. Fir S = 2R erhélt man H = 0 und T = 7w +/R/g, also die
halbe Umlaufzeit einer Kreisbahn im Abstand R.

Zahlenbeispiel: Die Oberflichenbeschleunigung g betrage g = 9.81m/s?,
der Erdradius R = 6.371 * 10%m. Mit diesen Daten folgt fiir die Kreis-
bahngeschwindigkeit

Vg R ~ 7906 m/sec. (6.152)

Setzen wir fiir den Winkelbogen der Wurfweite 1/4 Erdumfang an, also
©m = /2 oder W ~ 10000km, so erhalten wir

vg ~ 7194 m/sec (6.153)

Diese Geschwindigkeit muss die Rakete nach Brennschluss der dritten
Stufe erreicht haben. Um die Flugzeit zum Ziel zu berechnen, erhalten
zunéchst fiir die Zeitkonstante mit den obigen Daten in Sekunden

|R
7 ~ 806 sec. (6.154)

Damit folgt fiir den ganzen Viertelbogen um die Erde
T ~ 1933 sec = 32m 13 sec (6.155)

Es dauert also etwas iiber eine halbe Stunde, bis die Rakete das Ziel
erreicht hat. Mit diesen Zahlen hat man in etwa eine Vorstellung von den
erforderlichen Geschwindigkeiten und den entsprechenden Zeitraumen.
Schon C. CRANZ hat in seinem Lehrbuch von 1910 Teile dieser Probleme
etwas umstandlich durchgerechnet. An eine Raketenballistik war damals
(1910) natiirlich noch nicht zu denken. Erst H. OBERTH hat 1929 in
seinem Hauptwerk Wege zur Raumschifffahrt diese Fragen sehr ausfiihrlich
behandelt ([11]). Wahrend seiner Zeit in Peenemiinde zu Beginn der
1940er Jahre entwickelte er auch sein Dreistufenkonzept fiir Raketen mit
sehr groflen Reichweiten.

Die Idee, mit einer ,Riesenkanone® anstatt einer Mehrstufenrakete
ein Objekt in das Weltall zu schielen, hatte schon I. NEWTON. Roman-
haft beschrieben wurde es dann von dem franzosischen Romancier und



’ Wikm] H e° \ vo[m/s] \ H[km] \ T[min] ‘
1000 || 42.8 3015 240 7.91
2000 || 40.5 4111 459 11.70
3000 || 38.3 4862 655 14.93
4000 || 36.0 5431 828 17.87
5000 || 33.8 5880 976 20.62
6000 || 31.5 6246 1098 23.22
7000 || 29.3 6548 1195 25.69
8000 || 27.0 6801 1264 28.01
9000 || 24.8 7014 1305 30.18
10000 || 22.5 7194 1319 32.20

Tab. 6.4: Bahndaten von optimalen ballistischen Kurven fir zehn verschiede-
ne Reichweiten auf der Erdoberfliche. Schon der Raketenpionier H. OBERTH
hat im Jahre 1929 solche Berechnungen verdffentlicht. Die physikalischen
Konstanten sind hier wieder R = 6371 km und g = 9.81m//s2.

Raumfahrt — Traumer Jules Verne, der 1865 erstmals eine Reise ,von der
Erde zum Mond“ beschrieb. Sein Raumgefahrt liel er von einer unterir-
dischen Riesenkanone in Florida mondwérts schieflen. Ende des ersten
Weltkrieges wurden von der Firma Krupp Geschiitze mit iiberlangen Roh-
ren entwickelt, um Reichweiten von iiber 100 km zu erlangen. Und um
1965 wurde mit einem amerikanischen ,, Raumgeschiitz* von 36 Metern
Lange von Barbados aus Reichweiten von {iber 250 km erreicht. Neuere
Entwicklungen auf diesem Gebiet sind Magnetspulenkanonen (coil gun),
mit denen kleine ,Satelliten* auf Geschwindigkeiten von etwa 5000m/s
gebracht werden kénnen. Ob damit aber schon erfolgreich kleinere Korper
in die Erdumlaufbahn gelangen konnten, ist dem Autor nicht bekannt.



7 Schlussbemerkungen

Der Wunsch, die Erde fiir kurze Zeit mal zu verlassen, ist schon sehr alt.
Dies bezeugt eine Textstelle aus der antiken Liigengeschichte, ndmlich
aus der ITkaromenippus oder die Luftreise von LUKIAN VON SAMOSATA
(120-180):

Vom Weltraum aus sah ich die Erde ganz aufSerordentlich klein
- ich will sagen, noch kleiner als den Mond — so dass ich mir,
wie ich zum erstenmal hinunter guckte, gar nicht vorstellen
konnte, wo all die hohen Berge und das so grofie Weltmeer
geblieben wdren .... Aber der Sonnenglanz, der mir aus dem
Ozean entgegen-spiegelte, liefl mich schliefSen, dass das, was

ich da sah, die FErde sei.

Das Problem der ballistischen Kurve oder allgemeiner das der Bewe-
gung eines Korpers mit Luftwiderstand und Gravitationsbeschleunigung
hat Mathematiker und Militdrwissenschaftler der letzten 500 Jahre immer
wieder beschiftigt. Als I. NEWTON entdeckte, dass die Bremskraft des
Luftwiderstandes in guter Ndherung mit dem Quadrat der Geschwindig-
keit zunimmt, konnte das Problem dem Differentialkalkiil unterworfen
werden. Doch eine exakte einfache Losung wie im planetaren Zweikor-
perproblem der Himmelsmechanik existiert nicht - selbst ein I. NEWTON
konnte mit seinen ausgefeilten geometrischen Methoden wenig ausrichten.

In den 1930er Jahren kam dann die Raketenballistik hinzu - natiirlich
zunéchst aus rein militdrischen Interessen. Erst Anfang der 1960er Jahre
wurde das Problem von Aufstiegsbahnen einer Rakete in einen Erdorbit
als Teil einer neuen ballistischen Aufgabe untersucht. Solche Fragestel-
lungen waren einem I. NEWTON oder L. EULER noch vollig unbekannt.
Doch der eigentliche Reiz dieser Probleme liegt gerade in ihren Schwie-
rigkeiten und unerwarteten einfachen Losungen. Es kommt immer wieder
darauf an, geschickte neue Approximationsmethoden zu finden. Jeder
darf hier seine kreativen Kréifte ausprobieren und kann so dem komplexen
Problem immer wieder neue Seiten abgewinnen. Der Mensch wird hier
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Oinchhaufen Q. TCerrfurlh pinx

Fig. 7.1: Die witzigen Einfdlle oder scherzhaften Erzihlungen (Facetien)
eines Miinchhausen sind heute durch die Mondflige in ganzlich unerwarteter
Form Realitit geworden.(Bild: Oscar Herrfurth - Ritt auf der Kanonenkugel)

zum Kinstler...er kann hier vielleicht sein eigenes mathematisches Taj
Mahal (Tadsch Mahal) finden.



Anhang

A.1 Die Lambertsche W - Funktion

Um die Aufstiegsbahn einer Rakete in eine Umlaufbahn oder die Wurfwei-
te einer ,, Kanonenkugel“ bei einem flachen Elevationswinkel zu berechnen,
hat sich die wenig bekannte transzendente W-Funktion W{z] als sehr
niitzlich erwiesen. Sie ist definiert durch die Aquivalenten Definitionen

n==¢Eet, E=Wl, WhleW =y Wlcet] =¢, (A1)

wobei &, n beliebige komplexe Zahlen darstellen kénnen. Die Funktion
wurde zum erstenmal von J.H. LAMBERT und L. EULER betrachtet und
spielt in der mathematischen Physik heutzutage eine wichtige Rolle. Im
reellen Intervall = € [1/e,0) existieren fiir diese Funktion zwei reelle Zwei-
ge, die mit Wo[z] (oberer Zweig) und W _1[z] (unterer Zweig) bezeichnet
werden. In der Ballistik benétigt man beide Zweige dieser Funktion. Um
den Punkt 2 = 0 lautet die Taylorreihe der Funktion W |[x]

n=o (_n)n—l

Wolz] = Z Tm"

3 8 125
— — 2 — 3 . 4 5 _
= a:+2x 3x +—24x
Der Konvergenzradius ist hier 1/e. Fiihrt man jetzt die zwei Hilfsfunktio-

Ly = In[—z]; Ly = In[— In[—z]] (A.2)

ein, so gilt fiir die asymptotische Entwicklung der Funktion W_1 [z] im
Intervall z € [-1/e,—0) die Reihe

Lo Ly(2—Ls) Lo(6—9Ly+2L3)
W_ifa] = Ly — Lo + =2 — -
o] =Ly = Lo+ 77 o1z 6L3
(A.3)




Wo(X)
1 P—
0
— -1
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= _2 \
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X

Fig. A.1: Die Lambertsche W x| - Funktion mit ihren beiden reellen Zweigen.

Die Koeflizienten sind hier Stirlingsche Zahlen. Fiir die Funktion im
oberen Zweig gilt analog fiir x — oo

In[In[z]]
In[z]

Wolz] = In[z] — In[ln[z]] + — ... (A.4)

Weitere zum Teil bemerkenswerte Details findet man in der Literatur
([170).-

Gerade die Funktion —Wg[—z] spielt ja bei der analytischen Berech-
nung einer idealisierten Aufstiegs - und Abstiegsbahn einer Rakete (Mond-
landung) eine entscheidende Rolle. In der Literatur wird die Funktion

Tfz] = ~W[—1] (A.5)

auch die Eulersche T-Funktion genannte. Fiir die Ableitung gilt die
Relation Wolz]
W[z = — volrl
ol T Wola])

Es gilt speziell um den Punkt z = 0 die Taylorreihe der Funktion



n=oo n—1

n
Tolz] = —Wo[—2] = E o x”
n=1 '
3 8 125
_ 2, 2.3, ° 4 5
= x+x +2x +3:E +—24 o 4.

Der Konvergenzradius ist auch hier 1/e. Wir definieren jetzt die Funkti-
onsschar

mit

folz] = —Wo[—2].
Dann gelten die Rekursionen

Jre1lz] = / ot fr[z] de; {k=0,1,2,...}

Im Einzelnen ergibt sich so

1

file] = —Wo[-a] - §W0[—$]27
3 1 .
falel = ~Wol-a] - 5 Wo[-a]® — = Wol-a],
Analog gilt auch die Darstellung

" (n+ )"t 1
_W(] [—./L'] = Z 2772?/' :L.TL+ 2

n=0

1 4
= :171/2+ §x3/2+ ng/Q + g:ﬂp +...

Definieren wir die parametrisierte Funktion

n=00 1yn—k—1
(n+3)" 1
oulel = 2 e

n=0

dann gelten mit



die Rekursionen
1 _
gkﬂ[m}:i/x 1gk[x]dac; {k=0,1,2,...}

Im Einzelnen gilt dann zum Beispiel

g1(z]

~Walal (1+ 3 Wal-a])

g2lz] = —Wo[—z] (1 + %Wo[fw] + % Wo[x]) )

Mit Hilfe dieser Entwicklungen ist es im Prinzip moglich, die analytischen
Reihenkoeffizienten der Aufstiegsbahn einer Rakete nach o = a;/g exakt
durch rationale Zahlen auszudriicken.

A.2 Der Satz von Cranz

Wabhrscheinlich ist der Begriff ,Satz von Cranz* historisch nicht ganz
richtig, aber in seinem Lehrbuch von 1910 hat C. CRANZ einen elemen-
taren Lehrsatz {iber die Lage des zweiten Brennpunktes von einer Schar
von Keplerellipsen ausgesprochen, die dadurch entstehen, dafl Korper mit
steigender Geschwindigkeit immer in der gleichen Richtung von einer Pla-
netenoberfliche abgeschossen werden. Man kann diesen Sachverhalt mit
den Formeln (6.119) und (6.122) verstehen. Der eine Brennpunkt liegt im
Erdmittelpunkt, der andere Brennpunkt hat dann vom Erdmittelpunkt
mit v = vp/+/g R den Abstand

(2 _~2)~2 2
2ae= 2V1 (22_’}/7)27 cos[®] R (A.6)

Legt man der Figur (A.2) ein Koordinatensystem mit dem Ursprung
im Erdmittelpunkt (0,0) (erster Brennpunkt der Ellipsen) zugrunde, so
lauten die Koordinaten des zweiten Brennpunktes zunéchst

xo = 2ace sinfp/2], Y2 = 2a€ cos[p/2] (A7)



Fig. A.2: Der zweite Brennpunkt aller Keplerellipsen, die unter gleichem
Winkel © mit steigender Geschwindigkeit vom Punkt A abgeschossen wurden,
liegen auf einer geraden Linie, die durch den Abschussort geht und die
Steigung — cot(20) hat.

Wegen (6.119) gilt aber

. - 72 sin(20)
sin[p/2] = 2/1— (2—+%)~2 cos[O]
coslp2] = 1—~2 cOS[@]Q

V1= (2—=172)72 cos[O]?

Mit dem obigen Resultat ergibt sich so

72 sin(20)
2—2

2
2 cos(20)
Y2 = (1 T oo R

X2 R



Durch Elimination von « ergibt sich so fiir den geometrischen Ort des
zweiten Brennpunktes der Ellipsenschar die Geradengleichung

y2 = R — cot(20) 2 (A.8)

In der Figur (A.2) ist die Situation fiir den Elevationswinkel © = 7/6
dargestellt.

Den Satz von CRANZ kann man natiirlich auf die optimalen Flugbah-
nen erweitern. Da dann der Abschusswinkel © selbst eine Funktion des
Geschwindigkeitsverhiiltnisses v = v9/+/g R ist, folgt nun

22142, (o
som o= (1-gl) R 0

Daraus folgt natiirlich sofort

3+ (y2 - ];>2 = (12%)2. (A.10)

Der geometrische Ort des zweiten Brennpunktes aller optimalen Bahnen
ist somit ein Kreis, dessen Mittelpunkt auf halber Strecke zwischen Erd-
zentrum und Abschussort liegt, und dessen Radius dem halben Erdradius
entspricht.

o =

A.3 Das ballistische Integral

Im Text wurde der Abstand der senkrechten Asymptote der idealen
ballistischen Kurve vom Abgangsort (siche Fig.1.2) durch das Integral
(4.35)(quadratisches Luftwiderstandsgesetz)

2 7 s[O]2
w, =20 / — Coig] dp (A.11)
Evg
_ 6] + =5* cos[O]? [f(tan[O]) + £[p]]
dargestellt. Fir k = 0 ist dieser Abstand natiirlich unendlich, weil eine
Wurfparabel keine senkrechte Asymptote besitzt. Man kann versucht
sein, dieses Integral durch Verschiebung des Integrationsweges in die



Fig. A.3: Das Verhalten der Funktion |F[p]| in der komplezen p - Ebene
fiir kv%/g =1 und © = 0. Auf der negativen reellen Achse existiert eine
Polstelle, auf der imagindren Achse hat die Riemannsche Fliche einen Ver-
zwetgungsschnitt.

komplexe Zahlenebene p zu vereinfachen oder gar durch Residuenbildung
an Polstellen zu berechnen. Es kommt hier also auf die Funktion

cos[O]?

S (A.12)
1+ %20 cos[O]? [f(tan[©)]) + £[p]]

Fp]

flp] =pV1+p*>+Inp+ 1+ p?] (A.13)



an. Beim Ausklinken einer Fliegerbombe ist © = 0 und die asymptotische
horizontale Flugweite ist dann

2 7 2
Wy = U—O/# = U—OW[V] (A.14)
]. + Tof[p] g

mit der Funktion

/ 1+Vf (A-15)
0

und dem einzigen Parameter v = kv /g. In Fig. (A.4) ist die Abhiingigkeit
der Weite von v deutlich zu sehen.

10

wlv]

8.0 0.2 0.4 0.6 0.8 1.0
v=k vozlg

Fig. A.4: Die horizontale Weite |w[v]| einer ballistischen Kurve mit © =0
in Abhangigkeit des Parameters v =k v%/g.

A.4 Optimierung von Stufenraketen

Die Physik des Raketenantriebes und des Raketendesigns gehort eher
in das Gebiet der inneren Ballistik beispielsweise der Ingenieurwissen-
schaften. Aus historischen Griinden soll hier aber kurz das Problem



des optimalen Designs von Stufenraketen behandelt werden, welches als
Erster HERMANN OBERTH in seinem Buch von 1929 fiir eine einstufige
Rakete und im Jahre 1941 in Peenemiinde fiir eine mehrstufige Rakete
durchgefiihrt hat.

Vernachlédssigt man der Einfachheit halber die Gravitation und den
Luftwiderstand, so gilt nach dem russischen Raketenpionier KONSTANTIN
EDUARDOWITSCH ZIOLKOWSKI (1857-1935) fiir die Geschwindigkeit v
einer Rakete die Formel

v=csIn {mz} . (A.16)
mp

Die Grofle ¢s bedeutet hier die Ausstofigeschwindigkeit der Triebwerks-
gase, myz die Gesamtmasse der Rakete bei der Ziindung und mp die
Masse der Rakete bei Brennschluss. Wenn jetzt eine einstufige Rakete
eine bestimmte Geschwindigkeit erreichen soll, muss bei vorgegebenen
¢s das Massenverhiltnis myz/mp einen bestimmten Wert haben. Physi-
kalisch kann man fragen, wie hoch der Wirkungsgrad einer einstufigen
Rakete ist. Unter Wirkungsgrad verstehen wir hier das Verhéltnis der
aufgewendeten Energie im Triebwerk zur erreichten Bewegungsenergie
der ausgebrannten Restrakete (Nutzlast 4+ Struktur) bei Brennschluss
ist. Fir den aufgewendeten Energieanteil F; der Triebwerke nehmen wir
gendhert die kinetische Energie der ausgestoflenen Gasmasse. Es gilt
1

E, = E(mz—mB)ci. (A.17)

Die kinetische Energie Fy der Rakete bei Brennschluss ist dagegen

1 myz 2

Der Wirkungsgrad @ einer einstufigen Rakete ergibt sich so zu

2
mp In [M]
e (A.19)
myz —mpg
Definieren wir das Massenverhaltnis
p= me (A.20)

mZ’



so gilt auch
2
P In [p]
1—-p

Qlpl (A.21)

Die Grenzwerte sind Q[0] = Q[1] = 0. Dazwischen muss also ein Optimum
fiir den so definierten Wirkungsgrad liegen. Eine exakte Rechnung liefert

1 _
Pm = _§W0 [_26 2] ;

— 0.20318... (A.22)

wobei Wy[¢] die Lambertsche Funktion des oberen Zweiges bedeutet.
Der eigentliche Wirkungsgrad ergibt sich so zu

vt - wl-3] (ol 2])

= 0.64761... (A.23)

Das optimale Geschwindigkeitsverhéltnis liegt jetzt bei

2
L= 24 W {2} ~1.59362. .. (A.24)
(&

Cs

Der energetische Wirkungsgrad einer einstufigen Rakete kann also in
dieser Form knapp 65% erreichen. Die Endgeschwindigkeit betragt etwas
mehr als das Anderthalbfache der Ausstromgeschwindigkeit c;.

Will man jetzt hohere Endgeschwindigkeiten erreichen, muss man
Mehrstufenraketen verwenden. Historisch ist dabei bemerkenswert, dass
die alteste bis heute bekannte Beschreibung einer Mehrstufenrakete schon
aus dem Jahre 1559 herriihrt!. Sie stammt von dem Militértechniker und
Raketenpionier CONRAD HAAS (1509 - 1576), der im Jahre 1551 mit
der Armee des Romisch-deutschen Konigs Ferdinand 1. als Zeugwart und
Biichsenmeister nach Hermannstadt in Siebenbiirgen (ruménisch Sibui,
ungarisch Nagyszeben) kam und dort aufgrund der Tiirkeneinfille die
Leitung des Kriegsarsenals iibernahm. Zwischen 1529 und 1559 ergénzte

1Doru Todericiu: Preistoria Rachetei Moderne. Manuscrisul de la Sibiu 1529-1569,
Editura Academiei RSR, Bucursti, 1969
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Fig. A.5: Dreistufiges Raketendesign von CONRAD HAAS aus dem Jahre
1559, gezeichnet in einem Kunstbuch aus Hermannstadt in Siebenbiirgen.
Das Buch wurde erst 1961 in einem Archiv (Staatsarchiv Sibiu, Varia II
374) entdeckt. Danach wurde die dreistufige Rakete erst wieder 1650 von dem
polnisch-litauischen Waffenkonstrukteur CASIMIR SIMIENOWICZ beschrieben.
(Quelle: wikimedia.commons)

er das von seinem Vorfahren HANS HAASENWEIN geerbte - zwischen
1450 und Mai 1459 angelegte Feuerwerksbuch von 1420, welches er den
Titel Kunstbuch gab (Staatsarchiv Sibiu, Varia IT 374), um wesentliche
Teile?. Kurios mutet es heute an, dass auch H. OBERTH gebiirtig aus
Hermannstadt in Siebenbiirgen stammte.

Bei der theoretischen Betrachtung wollen wir die Stufenaufteilung so
verstehen, dass von der Spitze der Rakete die Stufenzahlen von N, N —
1,N—2,...,2,1 nach unten gezdhlt werden. Die erste Stufe beinhaltet so
die gesamte Rakete. Zur theoretischen Beschreibung dieser Stufenrakete
mit N Stufen miissen jetzt drei Massenverhiltnisse p,,, g,, s, fir jede

2Hans Barth: Conrad Haas - Raketenpionier und Humanist, Johannis Reeg Verlag,
Heilbronn 2005, 94 Seiten.



Teilstufe n = 1,2,... N definiert werden. Es gilt

MmB.n Masse bei Brennschluss der Stufe n

Pn = mzn B Masse bei Ziindung der Stufe n
. Mpna Masse der Nutzlast der Stufe n
I = mzn - Masse bei Ziindung der Stufe n
s Mg, _ Masse der Struktur der Stufe n
n = =

mzn Masse bei Ziindung der Stufe n

Fir die GroBe g, gilt auch

mz n+1 Masse bei Ziindung der Stufe n+1

qn = =
mzn Masse bei Ziindung der Stufe n

Die Gesamtmasse der Stufenrakete beim Start wére dann my ;. Es gelten
auBerdem die beiden alternativen Randbedingungen

mB,n frnd mL,TL + mS,n (A.25)

Mmsn = MBn — MZntl (A.26)

und daher die wichtige Relation

DPn = qn + Sn (A27)

Bei der Optimierung einer N-Stufenrakete kommt es im wissenschaftlichen
wie 6konomischen Bereich darauf an, das Verhéltnis aus der Nutzlast der
letzten Stufe zur Gesamtmasse der Rakete beim Start zu maximieren.
Fiir die Nutzlast der letzten Stufe gilt aber jetzt

mp,N = (NMzZN
= (dNgN-1MZ N-1
= (N GN-1gN-2TMZ N-2

Daraus folgt fiir das zu maximierende Verhéltnis

N
mip N
F=—==]]« A28

mz’l n—qu ( )



Unter der Voraussetzung, dass die Strahlgeschwindigkeit ¢4 aller Triebwer-
ke gleich ist, gilt fiir die Endgeschwindigkeit der Rakete (ohne Gravitation
und Luftwiderstand)

N
Vg = —Cg In [H Pn
n=1

N
= —c,4 Z In[g, + $n]
n=1

(A.29)

Diese Endgeschwindigkeit geht als Nebenbedingung in das Extremwert-
problem ein. Das zu maximierende Funktional lautet also

N N
F=[]a+2> g, +s, (A.30)
n=1 n=1

wobei A ein Lagrangescher Multiplikator darstellt. Die Strukturgréfien
sn sind dabei durch die Konstruktion vorgegeben. Gesucht wird ein Satz
optimaler ¢, Werte. Partielle Differentiation nach den ¢, Werten liefert
fiir jedes n die Bedingung

OF N n
y — = n— A = 0! A 31
L 7al V C s 3y

Daraus folgt unmittelbar die Identitdt der Verhéltnisse
s s s
-2 =N = konstant
a1 q2 gnN

Dies bezeichnet man auch als die Gewichtsahnlichkeit einer optimier-
ten Stufenrakete mit identischen Strahlgeschwindigkeiten. Es ist jetzt
sicherlich sinnvoll, fiir alle Stufen

QL =q@=...=4qNn = g
§1 =8 =...=8N = S,

zu setzen. Durch Konstruktionsbedingungen und aus Stabilitdtsgriin-
den ist der Parameter s in den meisten Fillen auf s ~ 1/10 festgelegt.



Der zu optimierende Parameter ist somit ¢ mit 0 < ¢ + s < 1. Die
Raketengleichung lautet jetzt vereinfacht

vg = —N ¢; Inf[g + §] (A.32)

Auflésen nach der Stufenzahl und Einsetzen in (A.28) fihrt zu dem
logarithmierten Funktional

Yo In[q]

In(F) = o g +a

(A.33)

welches durch Variation von ¢ maximiert werden muss. Die notwendige
und hinreichende Bedingung fiir das Extremum ¢ — ¢[s] lautet

(g+5) =q1 (A.34)

Diese Bestimmungsgleichung fiir eine optimale Unterteilung einer Stufen-
rakete wurde zum erstenmal von HERMANN OBERTH im Jahre 1941 in
Peenemiinde abgeleitet und diskutiert. Ende 1945 erschien ein personli-
cher Bericht in englischer Ubersetzung an die Amerikanische Kommission,
in der es unter anderem hief3:?

I have investigated these questions in 1941 (as far as I know I
am the only one) in precise mathematical form and expressed
my views in a confidential report of 37 pages: ,,On the Best
Division of Step - aggregates Fourteen copies of the report,
which was countersigned by the chief of the Peenemiinde Pro-
ject Division, graduate engineer Roth*, appeared at that time.
Several copies were burned during the 1943 bombing attack,
the rest remained in Peenemiinde...”

3David Myhra: Hermann Oberth - One of the Fathers of Rocketry. Published by R.C.
Walters RCW Technology Sales & Services Inc. 15082 Iona Lakes Drive, Florida
33908, (2013)

4LupwiGc RoTH (1909-1967) war deutsch - amerikanischer Ingenieur und Projektleiter
des Peenemiinder Biiros fiir Zukunftsprojekte - verantwortlich insbesondere fiir
Stufenraketen wie dem Aggregat A9/A10/A11 und Al2, die als Vorlage zur
spateren Entwicklung der Saturn 5 AS(501) dienten.

5Der 23 seitige Bericht wurde am 4. Oktober 1945 von REYNOLD DREYER ins Englische
iibersetzt und erschien unter dem Titel: ,, The Design of a Long - Range Rocket* .



Die transzendente Gleichung (A.34) lasst sich numerisch oder durch eine
Potenzreihe nach dem Strukturparameter s 16sen. Betrachtet man die
Taylorreihe nach dem Parameter s

(q+8)7 —q? = q7 (1 +1n[g]) s + O[s]%,
so ergibt sich in niedrigster Ordnung in s die Grenze ¢ = 1/e; giiltig
fir sehr kleine Strukturparameter s. Die Grofle e bezeichnet hier die
Eulersche Zahl mit In[e] = 1. Genauer gilt

o s Les2a L eyt 13 (e
q[s]—e (1 2es+24 (es) +192O (es) +580608 (es) -l-) (A.35)

Numerische Rechnungen zeigen, dass ¢[s] mit steigendem s stetig abfallt
und bei s = 1 den asymptotischen Grenzwert null erreicht. Auflerdem
gilt ¢[1/4] = 1/4. In der Umgebung dieses kritischen Punktes gilt dann
die Entwicklung

b=t (1) () e

Auch gilt fiir die Umkehrung von (A.34) nach s
q+s=-exp[WylgIng]]. (A.36)

Fiir ein optimiertes ¢ &8t sich so der dazugehorige Strukturparameter s
ableiten. Die optimierte Stufenzahl N der Rakete ergibt sich mit (A.32)

za
(%) 1

N—_20__ -~
¢s Infg + $]

(A.37)

oder als Reihenentwicklung

N:U—0 (l—i—%es—ﬁ—

Cs

1, 5 1 s 1 .
6(68) —5—1—6((55) +4—5(es) —|—> (A.38)

Die Stufenzahl hédngt also im Wesentlichen von der zu erreichenden
Endgeschwindigkeit vy ab, die mit Gravitation und Luftwiderstand noch
nach ,,Oben* korrigiert werden muss. Die Zahl wird im Allgemeinen nicht
ganzzahlig sein. Dies macht die Einfithrung von sogenannten Boostern
(Verstarkern, Hilfsraketen) sinnvoll, die mit der ersten Stufe gleichzeitig
geziindet werden, aber eher abgeschaltet werden. In diesem Sinne wére
die Ariane 5 eine 2.5 stufige Rakete.



Fig. A.6: Optimale Massenaufteilung einer zweistufigen und dreistufigen
Rakete im Grenzfall s = 0, also vernachldssigbarer Strukturmasse. Auffdllig
ist bei der dreistufigen Variante, wie massiv die erste Stufe gegeniiber den
anderen Stufen sein muss.

Um die gestapelten Einzelmassen der einzelnen Stufen zu berechnen,
setzen wir die Gesamtmasse myz ; der Rakete beim Start gleich M. Dann
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Fig. A.7: Die Funktion q — q[s] bei der Optimierung von Raketenstufen,
berechnet nach (A.34).

gilt mit den obigen Definitionen

m = (1-¢M

me = q(1-—qM
my1 = " P(1l-qM

my = ¢V M

Es ist hier interessant, die obigen Formeln mit den damaligen Design-
Daten der Saturn V AS(501) aus den 1960er Jahren zu vergleichen.
Die erste Stufe hatte mit vollen Tanks eine Gesamtmasse von etwa
mq ~ 2145 Tonnen, die zweite Stufe mg ~ 479 Tonnen und die dritte
Stufe ms3 ~ 117 Tonnen. Die vierte Stufe (Nutzlast) bestand im Wesent-
lichen aus dem Apollo Service Modul und der Mondfihre, die jeweils eine
Masse von 25 und 15 Tonnen hatten. Man kann also gendhert my4 ~ 40



Tonnen annehmen. Fiir die Gesamtmasse der Rakete ergibt sich so die
Abschétzung M ~ 2781 Tonnen. Diese Daten entsprechen recht gut
einem g-Wert knapp unterhalb von ¢ ~ 1/4 und knapp oberhalb von
s~ 1/4.

Unabhéngig von der Stufenzahl einer optimierten Rakete ergibt sich im
Grenzfall eines sehr kleinen Strukturparameters der gendherte universelle
Ausdruck

M~ e " (1—e) M (A.39)
n={1,2,...,N—1}

und fiir die letzte Stufe
my ~ e VT (A.40)

Die Summe aller Einzelstufen m,, ergibt natiirlich immer die Gesamtmasse
M. In Fig. (A.6) sind fir N = 2 und N = 3 die Massenaufteilungen der
einzelnen Stufen fiir den obigen Spezialfall s = 0 anschaulich geometrisch
dargestellt.
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