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1 Einleitung
Das Werfen von Speeren und Pfeilen als technische Jagd-Kunst hat die
Menschheit schon seit Jahrtausenden beschäftigt und fasziniert. Aus rein
empirischer Erfahrung hat man es hier sicherlich zu hoher Fertigkeit ge-
bracht. Das heute benutzte Wort Ballistik kommt aus dem Griechischen,
von ballein – Werfen. Die Entwicklung der Ballistik als Wissenschaft
wurde in Westeuropa erst zu Beginn des sechzehnten Jahrhunderts stär-
ker vorangetrieben. Hauptmotivation war natürlich die Frage, wie man
Kanonenkugeln möglichst genau ins Ziel bringt und von welchen Faktoren
dies abhängt. Und hier war zunächst die genaue Gestalt der Flugbahn
von Interesse. Die besten Gelehrten und Mathematiker ihrer Zeit waren
mit dem Problem dieser ballistischen Kurve beschäftigt: Tartaglia,
G. Galilei, I. Newton, J. Bernoulli, F. Bacon, L. Euler, J.L.
Lambert, L. Legendre, S.D. Poisson, und F. Siacci, um nur Ei-
nige zu nennen. Doch was ist von ihren analytischen Ergebnissen heute
noch bekannt, wo moderne Hochfrequenz - Radaranlagen jede Flugbahn
genaustens vermessen können, aber das Schulwissen gerade noch die
Wurfparabel begreift?

Obwohl schon um 1300 die ersten Feuerwaffen in Europa auftauchten,
wusste man noch um 1500 nicht sicher, dass die Form der Flugbahn
einer Kanonenkugel wirklich eine kontinuierliche Kurve ist. Nach den
Lehren des Aristoteles sollte die Kanonenkugel mehr oder weniger
in einer geraden Linie in die Luft steigen, dann plötzlich stoppen und
in senkrechtem Fall zum Erdboden zurückfallen (Impetustheorie). Dann
aber schrieb im Jahre 1537 der italienische Mathematiker Tartaglia1

ein Buch über Artilleristik (Nova Scientia), indem er darauf hinwies, daß
die Geschossbahn eine kontinuierliche Kurve sei, eine zur damaligen Zeit
noch gewagte Behauptung. In einem zweiten Buch (Quesiti et Inventioni

1Nicolo Tartaglia (1499-1557), eigentlich Nicolo Fontana, italienischer Mathematiker,
Physiker und Topograph. Tartaglia heißt der Stotterer, weil er 1512 von einem
Schwert im Gesicht verletzt wurde. Ihm gelang zum erstenmal die Lösung einer
speziellen kubischen Gleichung.
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Fig. 1.1: Ballistische Kurven aus dem Buche „Nova Scientia“ des italie-
nischen Mathematikers Nicolo Tartaglia aus dem Jahre 1537. Deutlich ist
hier noch der Einfluss der „Impetustheorie“ zu sehen. Diese mathematisch -
philosophische Vorstellung geht auf den Scholastiker Albert von Rickmersdorf
(1316 - 1390) zurück und hat wohl noch älteren Ursprung.

diverse) aus dem Jahre 1546 erläuterte er diese Frage noch eingehender.
Als Berater für militärische Fragen der Stadt Verona wurde er gefragt,
unter welchem Winkel eine Geschossbahn maximale Reichweite
erzielt. Durch experimentelle Tests im ebenen Gelände stellte er dann fest,
daß dieser Winkel nahe 45 Grad ist. Für die damaligen Geschwindigkeiten
war das ein realistisches Resultat.

Der Erste, der die Flugbahn als eine parabelförmige Kurve ansah, war
Galileo Galilei. Er argumentiert in seinem Werk Der Dialog über die
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Fig. 1.2: In dem Buch „Nova Scientia“ des italienischen Mathematikers
Nicolo Tartaglia aus dem Jahre 1537 erscheint die ballistische Kurve schon
als kontinuierliche Kurve: Zunächst als eine Gerade, dann geht sie allmählich
in einem Bogen in eine senkrechte Gerade (senkrechte Asymptote) zum
Boden über. 1687 nahm I. Newton an, dass dies sehr gut einer Hyperbel
entspricht.

zwei Weltsysteme von 1632, dass im Vakuum die Flugbahn eine Parabel
sein müsse. Im Jahre 1644 veröffentlichte Evangelista Torricelli
(1608-1647) in seinem Hauptwerk Opera Geometrica([61])2 den Teil De
motu gravium .... Hier verallgemeinert er die von Galilei formulierte
horizontale Theorie der Wurfparabel auf beliebige Abwurfwinkel und gibt
eine Tabelle für die Wurfweiten an. Seine Theorie ergab für diesen Winkel
exakt 45 Grad, in glücklicher Übereinstimmung mit den Messungen von
Tartaglia aus dem Jahre 1537.

Im Jahre 1740 wurden in England von Benjamin Robins (1707-1751)
mit dem ballistischen Pendel Messungen von Geschossgeschwindigkeiten
gemacht. Die Ergebnisse lagen bei 400 m/s - 600 m/s, ein für damalige Zeit
unglaublich hoher Wert. Die Ergebnisse erschienen in seinem Werk New

2Berühmt ist dieses Werk von Torricelli auch durch die Betrachtung eines unendlich
langen Rotationskörpers (Trompete von Torricelli), welcher zwar ein endliches
Volumen - Maß, aber ein unendliches Oberflächen - Maß hat.
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Fig. 1.3: Die Erklärung der Wurfparabel nach Evangelistae Torricelli
1644. In der mittleren Spalte der Tabelle sind die Wurfweiten in der Form
10000 sin(2Θ) eingetragen, wobei Θ den Elevationswinkel des Kanonenrohres
bezeichnet. Die Wurfweite ist invariant gegenüber der Transformation Θ →
900 − Θ.

Principles of Gunnery (1742), für welches er 1746 die Copley Medaille
erhielt, die höchste Auszeichnung der Royal Society. Das Werk erlangte
im 18. Jahrhundert große Bedeutung und wurde in verschiedene Sprachen
übersetzt und erweitert (L. Euler, 1745). So schrieb für die französische
Ausgabe der Ökonom und Politiker A. R. J. Turgot (1727-1781) an
Louis XVI: (Zitat durch Clifford Truesdell, An Idiot’s Fugitive Essays
on Science (1984), p. 337)

The famous Leonhard Euler, one of the greatest mathemati-
cians of Europe, has written two works which could be very
useful to the schools of the Navy and the Artillery. One is a
Treatise on the Construction and Manoeuver of Vessels; the
other is a commentary on the principles of artillery of Robins
. . . I propose that your Majesty order these to be printed.

Denn L. Euler hatte das Buch von Robins mit erheblichen mathemati-
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schen Ergänzungen (Lehrsätze der Artillerie 1745 ) ins Deutsche übersetzt
und so seinen Wert erheblich gesteigert. 1766 veröffentlichte dann J.H.
Lambert eine eigene theoretische Untersuchung und konstruierte eine
sogenannte „echelle ballistique“. J. Lambert zeigte 1766, dass man bei
der Auswertung mit dem ballistischen Pendel nicht mit elastischen Stößen,
sondern eher mit inelastischen Stößen zu tun hat. Noch unglaublicher
war dann die Messung der Geschossabbremsung durch den Luftwider-
stand. Nun erkannte man die Bedeutung des Luftwiderstandes bei hohen
Geschwindigkeiten.

I. Newton hatte schon 1687 gezeigt, daß die Bremskräfte mit dem
Quadrat der Geschwindigkeit ansteigen müssten. Doch eine genauere
Lösung gab er nicht an. Die erste allgemeine analytische Lösung des
ballistischen Problems wurde durch J. Bernoulli im Mai - Heft der Acta
Eruditorum Lipsiae Seite 246 des Jahres 1719 gegeben. Die Motivation
zu dieser Untersuchung entstand offenbar durch eine „Provokation“ des
schottischen Mathematikers und Astronomen J. Keill, der es Bernoulli
sehr Übel nahm, dass ein Mathematiker minderen Ranges (Bernoulli)
einem Mathematiker höchsten Ranges (Newton) einen kleinen Fehler in
der ersten Ausgabe seiner Principia bei der geometrischen Konstruktion
einer ballistischen Flugbahn nachgewiesen hat. J. Bernoulli nahm für
die Bremsbeschleunigung des Luftwiderstandes ein Gesetz der Form vn an
und erhielt für die ballistische Kurve bei beliebigem n die parametrische
Darstellung in horizontaler x - Richtung und in vertikaler y - Richtung

x = a

∫
dp

Z(p)2/n
, y = a

∫
p dp

Z(p)2/n
, (1.1)

mit
Z(p) = b

∫
(1 + p2)(n−1)/2 dp. (1.2)

Das Problem kann also auf eine einzige Quadratur (Integral) zurückge-
führt werden, was dann aber G.F. Tempelhof 1781 zu der Bemerkung
veranlasste, dass diese Lösung sich nicht ohne die Bedingung der „con-
cessis quadraturis“ berechnen ließ. Schließlich lösten J. Bernoulli 1719
und L. Euler 1743 das ballistische Problem mit Hilfe der Differenti-
alrechnung für ein erweitertes quadratisches Widerstandsgesetz. Einen
gewissen Schlusspunkt setzte dann der schon oben erwähnte Generalleut-
nant G. F. Tempelhof mit seinem Werk Le Bombadier Prussien von
1781, welches von Friedrich dem Großen sofort unter militärische
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Fig. 1.4: Die Zarenkanone (Mörser) von 1586, wie sie heute am Kreml
in Moskau zu sehen ist. Die Kugeln wurden später (1834) zur Dekoration
gegossen. Kaliber 890mm. Quelle: Wikipedia Commons)

Geheimsache gestellt wurde. Die Gründe sind nicht ganz klar, zumal in
diesem Buch komplizierte längliche Reihenentwicklungen zur Darstellung
der ballistischen Kurve benutzt werden, deren praktische Verwendbarkeit
höchst zweifelhaft war und wohl auch nie numerisch ausgewertet wurden
– ganz im Gegensatz zu denen von J.H. Lambert. Klassische Lehrbücher
zur Ballistik schrieben schließlich I. Didion 1848 in Frankreich und
F. Siacci 1888 in Italien und C. Cranz von 1896 an in Deutschland
([16])3. Ab 1942 wurde in den USA der Rockefeller Differential Analyser,
der letzte am MIT von dem amerikanischen Erfinder Vannevar Bush
entwickelte rein mechanische Walzen - Analog - Rechner, dazu benutzt,
die nichtlinearen Differentialgleichungen der Ballistik für unterschiedliche
Spezialfälle wie Bombenabwurf und Flugabwehr zu lösen.

3Carl Julius Cranz (1858 - 1945). Wuchs in einer Pfarrersfamilie auf. Privatdozent
für Mathematik und Mechanik an der TH Stuttgart (1884-1903), Professor an der
Militärtechnische Akademie (1903-1920) in Berlin, Professor für technische Physik
an der TH Berlin (1929-1935) sowie Wissenschaftlicher Berater der chinesischen
Regierung in Nanking (1935-1937)
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Wie man lesen kann, hat das ballistische Problem weitgehende An-
wendungen in der Geschichte erfahren: Seien es die Bahnen von Kano-
nenkugeln, von Tennisbällen, von Golfbällen, von Fußbällen (mit dem
Magnuseffekt bei rotierenden Bällen), von Raumfahrzeugen oder von auf
die Erde stürzenden Meteoriten – überall spielt das ballistische Problem
in unterschiedlichen Ausprägungen eine Rolle.

Ein besonderes isoliertes Problem stellten zu Beginn des 19. Jahrhun-
derts Experimente mit fallenden Kugeln in hohen Türmen oder tiefen
Bergwerksschächten dar, die aufgrund der Erdrotation eine sehr kleine
„Ostablenkung“ erfuhren. Da diese „Ostablenkung“ ein direkter mecha-
nischer Beweis der Erdrotation darstellte (das Foucaultpendel kam ja
erst später), hat man damals viel Mühe auf die genaue Berücksichtigung
des Luftwiderstandes auf diese fallenden Kugeln verwandt. Hier sind
insbesondere die Untersuchungen von J.F. Benzenberg, P.S. Laplace
sowie von C.F. Gauß um 1802 zu nennen.
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2 Grundgleichungen
Im 17. Jahrhundert konnte man mit der neuen Differentialrechnung vier
große Kurvenprobleme angehen und lösen:

• Bahnkurve der Planeten um die Sonne (Kegelschnitte)

• Die Kettenlinie (Form eines hängenden Seiles)

• Das Brachystochrone Problem (minimale Rollkurven)

• Die Bahnkurve einer Kanonenkugel (Wurfparabel nach Torricelli -
Galilei oder Hyperbel nach Newton)

Von all diesen Kurvenproblemen ist das ballistische Problem (Wurfbe-
wegung mit Luftwiderstand) das Schwierigste. Selbst I. Newton hatte
mit diesem Problem seine Schwierigkeiten, denn seine geometrische Kon-
struktion der ballistischen Kurve als Hyperbel in der ersten Auflage
der Principia war nur eine Approximation, keine exakte Lösung einer
Differentialgleichung. Im Laufe des 18. Jahrhunderts konnten für das
quadratische Luftwiderstandsgesetz allerdings Reihenentwicklungen oder
genäherte analytische Lösungen gefunden werden.

Im Folgenden soll das klassische Problem der äußeren Ballistik mit
besonderer Berücksichtigung des 18. Jahrhunderts diskutiert werden. Als
Anregung diente hier auch ein Kapitel aus dem Lehrbuch zur Geschichte
der mechanischen Prinzipien von I. Szabo ([55]).

Ist der Luftwiderstand eine quadratische Funktion der Geschwindig-
keit v = |v|, so lauten die allgemeinen Bewegungsgleichungen für eine
rotierende Kanonenkugel im Erdschwerefeld bei völliger Windstille

(2.1).v = −k v v + ϵ (ω × v) − g

Hier bedeutet k den ballistischen Koeffizienten von der Dimension einer
inversen Länge und das vektorielle Kreuzprodukt ω × v die Beschleu-
nigung durch den sogenannten Magnuseffekt([35], [44]). Der Vektor ω
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liegt parallel zur Rotationsachse der Kanonenkugel und sein Betrag ent-
spricht der Winkelgeschwindigkeit der rotierenden Kugel. Der Vektor
g = {0, 0, g} beschreibt die zum Boden gerichtete Erdbeschleunigung. ϵ
ist eine dimensionslose Konstante, die in der Größenordnung

ϵ ∼ ϱLuft

ϱKugel
(2.2)

liegt. Kompliziertere Situationen entstehen bei schneller Rotation, wenn
das Geschoss nicht mehr eine Kugel, sondern längliche Gestalt hat (Krei-
seldynamik)1. Die Querbeschleunigung, beschrieben in der obigen Be-
wegungsgleichung durch den Term ω × v, war die Hauptursache für die
mysteriösen Seitenabweichungen oder Weitenvariationen bei ballistischen
Kurven, die man sich im 18. Jahrhundert noch nicht richtig erklären
konnte. Die richtige Vermutung aus zahllosen Experimenten hatte schon
der englische Militäringenieur B. Robins (1702 - 1751) , der auch schon
vorschlug, dass Kanonen gezogene Rohre haben sollten ([45]).

Die Preußische Akademie der Wissenschaften hatte noch im November
1793 ein Preisausschreiben zu diesem Thema vorgeschlagen. Darin hieß
es: ([46])

Da die Erfahrung lehrt, dass die in einem widerstehenden
Mittel geworfenen Körper, Bomben, zum Beispiel, sich meis-
tens mehr oder weniger von der lochtrechten Ebene entfernen,
in welche sie geworfen werden; so verlangt die Königliche
Akademie zu wissen: I) Wie und aus welchen Ursachen diese
Abweichung statt findet? II) Wie ihre Quantität in jedem ein-
zelnen Falle, mittels der anfänglichen Geschwindigkeit, des
Elevationswinkels, der Gestalt des Körpers u.s.w. bestimmt
werden kann.

Den Preis erhielt damals der Artillerieleutnant J.P. von Rohde (1759-
1834), der aber irrtümlich die Abweichungen anstatt der Eigenrotation
der geworfenen Körper den Windkräften und besonders den Zündern
zuschrieb. Als Rechtfertigung für die Vergabe des Preises an J.P. von
Rohde gab die Akademie erklärend an:

1Noch komplizierter ist die gekoppelte Bahn - Kreiseldynamik des von den Menschen
seit über 20000 Jahre benutzten Bumerangs
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Die Akademie erkennet, dass die Aufgabe, welche zur ge-
genwärtigen ( unter dem 12. Februar 1794 eingekommenen)
Abhandlung Anlass gegeben hat, sehr schwer aufzulösen ist;.
Auch sind die aufgeworfenen Fragen bey weitem noch nicht
völlig beantwortet. Die Erfahrung lehret, dass bei Kugeln ohne
Zünder ebenfalls eine beträchtliche Abweichung stattfindet.
Indessen konnte die Akademie nicht unterlassen diese Schrift
zu krönen, aus welcher viel Scharfsinn und tiefe Einsichten
in die höhere Mathematik hervorleuchten, und durch welche
die Bahn zu ferneren Untersuchungen auf eine glückliche Art
eröffnet worden.

Eine zufriedenstellende physikalische Erklärung für diese Abweichung
ballistischer Bahnen konnte erst 1852 der Physiker H.G. Magnus (1802-
1870) geben. Aber auch die rein mathematische Beschreibung ist nicht
einfach und bedarf - wie oben zu sehen - der Vektoralgebra. Wir definieren
den dreidimensionalen Tangentenvektor e der Bahn und dessen zeitliche
Änderung .e gemäß

v = v e; .v = .
v e + v

.e. (2.3)

Einsetzen in die obige Gleichung ergibt

(2.4).
v e + v

.e = −k v2 e + ϵ v (ω × e) + g

Skalare Multiplikation mit e führt für .
v zu der Gleichung

(2.5).
v = −k v2 + e ◦ g.

Setzt man dies wieder in die obige Gleichung ein, so folgt die Relation

(2.6)v
.e = +ϵ v (ω × e) + g − e (e ◦ g) .

Der Vektor .e steht senkrecht auf dem Tangentenvektor e und es gilt
e◦.e = 0. Anstatt nach der Zeit differenzieren wir nun nach der Bogenlänge
s. Wegen ds = v dt gilt so auch

(2.7)v2 de
ds

= +ϵ v (ω × e) + g − e (e ◦ g) .
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Diese Gleichung definiert die Krümmung K = 1/r der ballistischen Kurve.
Multiplizieren wir (2.6) noch skalar mit g ×e, so gilt für das Spatprodukt

(2.8)[g e .e] = ϵ (ω × e) ◦ (g × e) .

Ohne Eigenrotation bewegt sich die Kugel immer entlang der lotrechten
Ebene, die durch die Vektoren e und g aufgespannt werden. Mit Rotation
gilt dies aber nicht mehr, wie die obige Vektorgleichung zeigt. Abweichun-
gen von der Flugbahn können je nach Rotationssinn sowohl nach Rechts
wie nach Links geschehen. Es können aber auch künstlich „Auftriebe“
oder „Abtriebe“ ohne seitliche Abweichungen entstehen. Abhilfe kann nur
dadurch erreicht werden, dass der Rotationsvektor ω der Kanonenkugel
möglichst exakt parallel zum Geschwindigkeitsvektor v ausgerichtet wird.
Genau dies wurde ab der Mitte des 19ten Jahrhunderts durch gezogene
Rohre mit Führungsrillen erreicht.

Der „Magnuseffekt“ spielt heutzutage bei sehr unterschiedlichen Sport-
arten eine wichtige Rolle: Fußball (Bananenflanke, Flatterball), Tennis
- Tischtennis (Topspin, Slice), und Cricket (spin bowling). Golfbälle
besitzen sogenannte dimples, kleine kreisförmige Dellen an der Ballo-
berfläche, welche die Wirksamkeit des „Magnuseffektes“ noch erhöhen.
Um den Rückstoß bei einem Geschütz zu vermindern und damit die
Genauigkeit zu erhöhen, wurden zudem im 20. Jahrhundert sogenannte
Mündungsbremsen („muzzle brakes“) an das Rohrende montiert. Ausführ-
lich werden solche verwickelten Fragen in dem modernen Standardwerk
von R.L. Mccoy über äußere Ballistik behandelt ([34]).

Wir beschränken uns zunächst auf Flugbahnen von nicht - rotierenden
Körpern, bei denen das Spatprodukt [g e .e] immer Null ist. Sonderfälle wie
die Flugbahn eines rotierenden Fußballes oder eines schnell rotierenden
Golfballes werden gesondert behandelt. Die x− Achse unseres lokalen
Koordinatensystems zeigt immer in horizontale, die y− Achse immer
in vertikale Richtung. Dann gelten bei Windstille und quadratischem
Widerstandsgesetz die zwei Gleichungen

..
x = (a− k v2)

.
x

v
,

..
y = (a− k v2)

.
y

v
− g (2.9)

wobei k der ballistische Brems-Koeffizient (drag force) in der Einheit
einer inversen Länge und g die Fallbeschleunigung bezeichnen. Die Größe
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Fig. 2.1: Der Ingenieur und Architekt Nicolas Francois Blondel (1618 -
1686) schrieb das erste ausführliche Werk über „die Kunst, Bomben zu werfen“.
Er benutzte schon die parabolische Kurventheorie nach Galilei und Torricelli,
um die ballistische Kurve zu beschreiben. Für die damaligen Geschwindigkeiten
eine gute Näherung.

a beschreibt eine Eigenbeschleunigung des Geschosses in Richtung der
momentanen Bahntangente. Wir sehen hier schon den fließenden Über-
gang von klassischer Ballistik zur Raketenballistik, zumal in umgekehrter
Zeitrichtung betrachtet eine bremsende Bewegung wie eine beschleunigte
Bewegung erscheint und auch so beschrieben werden kann.
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3 Die Wurfparabel
Bevor wir die Wirkung einer bremsenden Kraft auf die Flugbahn genauer
untersuchen, wollen wir den einfachsten Fall zuerst behandeln. Ohne
Luftwiderstand gelten die sehr einfachen Bewegungsgleichungen

..
x = 0; ..

y = −g. (3.1)

Als Lösungen erhält man die schon von Galilei und Torricelli disku-
tierte Wurfparabel. Man bekommt für die Bahnkurve als Funktion der
Zeit t die Gleichungen

x[t] = v0 cos[Θ] t,

y[t] = v0 sin[Θ] t− 1
2 g t

2 (3.2)

und für die Gestalt der Bahn die Parabel

y[x] = tan[Θ]x− g x2

2 v2
0 cos[Θ]2 .

Dabei ist Θ der Elevationswinkel, v0 die Abschussgeschwindigkeit und t
die verflossene Zeit. Die Wurfweite W ergibt sich bei ebener Bodenfläche
zu

(3.3)W = v2
0
g

sin[2 Θ].

Hieraus folgt sofort die maximale Schussweite bei einem Elevationswinkel
von θ = 45◦. Die maximale Steighöhe H ergibt sich zu

(3.4)H = v2
0

2 g sin[Θ]2
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und die Flugzeit T zu

(3.5)T = 2 v0

g
sin[Θ]

Aus den beiden letzteren Formeln folgt die für alle Wurfparabeln gültige
Beziehung

(3.6)H = 1
8 g T

2.

Diese Relation1 gehört zu den bemerkenswertesten Formeln der Ballistik,
weil sie auch mit Luftwiderstand noch eine sehr gute Näherung darstellt.
Selbst in der Raketenballistik spielt sie eine gewisse Rolle, wie wir später
noch sehen werden.

Aus der obigen parabolischen Theorie kann man zudem noch die
Beziehung

(3.7)1
2 g T

2 = W tan[Θ]

ableiten, welche im 18. Jahrhundert für die Länge von Brandröhren
wichtig war. So liest man bei J. Vega den Satz ([63]): Die Quadrate der
Brandröhrenlängen verhalten sich gegeneinander wie die Produkte aus
den Wurfweiten multipliziert mit den Tangenten der Elevationswinkel
vom Horizonte...

Hat die Normale der ebenen Bodenfläche zum gravitativen Lot eine
kleine Neigung α (α < 0 Gefälle, α > 0 Steigung), so ist die Wurfweite
auf dieser geneigten Fläche durch den Ausdruck

w = W

cos[α] = 2 v2
0 cos[Θ] sin[Θ − α]

g cos[α]2 (3.8)

gegeben. Diese Formel löst das Problem des französischen Baumeisters
und Ingenieurs N.F. Blondel (1618-1686) (siehe Fig. 2.1). Maximal
wird diese Schussweite im geneigten Gelände bei der Elevation

Θm = π

4 + α

2 , (3.9)

1In England auch Sladensche Formel genannt, wohl nach E.B. Sladen (1831-1890)
benannt, der in Indien als Offizier diente.
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Fig. 3.1: Eine Illustration aus dem Buch ARCHITECTUR von Walther
Hermenius Ryff, Nürnberg 1547. Insbesondere hier über die „mathemati-
schen“ und „mechanischen“ Künste. (Quelle: wikimedia.commons)

welches die Winkelhalbierende zwischen dem gravitativen Lot und der
geneigten Bodenfläche beschreibt. Der relative Elevationswinkel Θα in
Bezug auf die geneigte Ebene ist also Θα = Θ − α. Um 1900 stellte man
sich die Aufgabe, bei welchen identischen Winkeln Θα und Θ die Schuss-
weite im ebenen und geneigten Gelände identisch ist. Diese Forderung
führt zu der Gleichung

cos[Θ + α] = cos[Θ] cos[α]2 (3.10)

Diese implizite Relation hat nur für Neigungswinkel α > 0 ansteigendes
Gelände zwei Lösungszweige, die in Figur (3.2) dargestellt sind. Der
kritische Grenzwinkel für die Elevation ist dabei

cos[Θc] =

√
9 + 5

√
5

22 ≈ 16.714◦, (3.11)

was einem ansteigenden Geländewinkel α von

cos[αc] =

√√
5 − 1
2 ≈ 51.827◦ (3.12)
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Fig. 3.2: Die beiden Lösungszweige der impliziten Relation (3.10).

entspricht. Eine weitere Komplizierung des so behandelten Problems tritt
ein, wenn das Ziel selber beweglich ist (FLAK). Historische Probleme
dieser Art können nur noch iterativ gelöst werden.

Zur Abrundung sollen vier ausgewählte Aufgaben zur Wurfparabel
diskutiert werden, die zum Teil von C. Cranz in seinem Lehrbuch ([16])
diskutiert wurden.

Optimale Parabel: Ist es möglich, von der Spitze der Cheopspyramide
aus mit einem Stein über die Basis der Pyramide hinaus zu werfen?

Dies berühmte Problem läuft darauf hinaus, den optimalen Weitwurf
von einer Anhöhe H zu bewerkstelligen (Analogie im Sport: Kugelsto-
ßen). In umgekehrter Zeitrichtung betrachtet entspricht diese Aufgabe
dem Problem, mit minimaler Geschwindigkeit oder mit dem geringsten
Energieaufwand eine Anhöhe H in der horizontalen Entfernung W zu
treffen.

Wir untersuchen das Problem mit den parametrischen Gleichungen

(3.13)x[t] = v1 cos[θ1] t, y[t] = H + v1 sin[θ1] t− 1
2 g t

2.

Die Größen v1 und θ1 bedeuten die Geschwindigkeit und den Abgangs-
winkel auf der Anhöhe H. Aus der Bedingung y[T ] = 0 folgt für die
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Fig. 3.3: Der optimale Wurf von einer Anhöhe H, wenn die Weite W
vorgegeben ist. Es gilt Θ1 = π/4 − α/2 und Θ2 = π/4 + α/2. Auch die
optimale Abwurfgeschwindigkeit wird durch H und W eindeutig bestimmt.
Vergleiche hierzu die Figur von Blondel aus dem 17. Jahrhundert (2.1).

Flugzeit bis zum Boden

(3.14)T = v1

g
sin[θ1] +

√
v2

1
g2 sin[θ1]2 + 2H

g
.

Die Aufprallgeschwindigkeit ergibt sich zu (Energiesatz)

(3.15)v2 =
√
v2

1 + 2 g H.

Die Wurfweite W ergibt sich mit der Flugzeit T zu (0 ≤ θ1 ≤ π/2)

(3.16)W = v1

g
cos[θ1]

(
v1 sin[θ1] +

√
v2

1 sin[θ1]2 + 2 g H
)
.

Maximal wird diese Wurfweite bei dem Abgangswinkel θ1 ≡ Θ1 und dem
dazugehörigen Aufprallwinkel θ2 ≡ Θ2 und (3.15)

cos[2 Θ1] = g H

gH + v2
1
, cos[2 Θ2] = g H

gH − v2
2
. (3.17)
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Die erste Formel löst hier das Problem beim Kugelstoßen, wenn bei
vorgegebener Geschwindigkeit v1 und H der optimale Abgangswinkel
gesucht wird. Einsetzen der optimalen Winkel in die Wurfweite führt nun
zu den beiden Beziehungen

W = v1

g

√
v2

1 + 2 g H, W = v2

g

√
v2

2 − 2 g H. (3.18)

Werden diese Gleichungen nach v1 und v2 aufgelöst, ergeben sich die wich-
tigen Relationen für die optimalen (minimalen) Abwurfgeschwindigkeiten
auf der Anhöhe

v1 =
√
g
(√

W 2 +H2 −H
)

(3.19)

sowie am Boden
v2 =

√
g
(√

W 2 +H2 +H
)
. (3.20)

Werden diese Ergebnisse in die Formeln (3.17) eingesetzt, so ergibt sich

tan[2 Θ1] = W

H
, tan[2 Θ2] = −W

H
(3.21)

mit der Bilanz Θ1 + Θ2 = π/2. Führt man noch den Böschungswinkel

tan[α] = H

W

ein, so gilt auch

Θ1 = π

4 − α

2 , Θ2 = π

4 + α

2 . (3.22)

Im Falle H = 0 ergibt sich die bekannte Forderung Θ1 ≡ Θ2 = 45◦ und
v1 ≡ v2 =

√
gW , für W = 0 dagegen v1 = 0 und v2 =

√
2 g H.

Die Flugzeit T dieser energetisch günstigsten Parabelbahn von der
Anhöhe zum Boden (oder umgekehrt) ergibt sich aus den obigen Formeln
zu

(3.23)
√
H2 +W 2 = 1

2 g T
2.

Der horizontale Abstand Wm der maximalen Flughöhe zum Abgangsort
ist durch die Beziehung

(3.24)Wm = 1
2 W

(
1 − H√

H2 +W 2

)
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gegeben. Für die maximale Flughöhe Hm erhalten wir mit Hilfe der
Flugzeit T

(3.25)Hm = (2H + g T 2)2

8 g T 2 .

Im Falle H = 0 erhalten wir wieder die bekannte Relation zwischen der
Gipfelhöhe und der Flugzeit in einer flachen Ebene - dann allerdings für
alle Abgangswinkel θ gültig.

Mit H = 137.2m und W = 113.75m erhält man in der Aufgabe

Θ1 = 19.83◦; Θ2 = 70.17◦; v1 = 20.06 m/s, v2 = 55.63 m/s.

Da als typische Geschwindigkeit der Werfer etwa 24m/s angenommen
wird (statistisches Mittel), könnte zumindest ohne Luftwiderstand dieser
Wurf gelingen.

Das Treffen einer Tonscheibe: Eine Wurfmaschine hat eine Tonscheibe
in die Luft geworfen. Zum Zeitpunkt t = 0 stellt ein Schütze fest, dass
sich diese Scheibe in der Höhe H und in der horizontalen Entfernung W
befindet und er sich exakt in der Bahnebene befindet. Ihre Geschwindigkeit
beträgt dabei vT und die Elevation sei θT (T: Target). Im gleichen Zeit-
punkt t = 0 feuert der Schütze eine Kugel, dessen Anfangsgeschwindigkeit
vP beträgt, ab. Welche Elevation θP muss der Schütze wählen, damit ein
Treffer in der Luft gelingt? (P: Projektil) Die Aufgabe kann auch als
Abfangproblem einer Rakete durch eine andere Rakete aufgefasst werden.
Wir nehmen hier idealisiert an, dass beide Körper Parabelbahnen in der
gleichen vertikalen Ebene ausführen. Der Luftwiderstand soll vernachläs-
sigt werden. Da beide Körper eine Wurfparabel beschreiben, haben wir für
eine Kollision die notwendigen und hinreichenden Bedingungsgleichungen

vT cos[θT ] tc = W − vP cos[θP ] tc,

H + vT sin[θT ] tc − 1
2 g t

2
c = vP sin[θP ] tc − 1

2 g t
2
c

Damit ist ein einfaches Abfangproblem definiert, bei der beide Flugbah-
nen Parabeln sind. Gefragt ist nach dem kritischen Abschusswinkel θP

und dem Zeitpunkt tc der Kollision oder des Treffers. Da beide Geschosse
derselben Gravitationsbeschleunigung unterliegen, fällt dieser Term in
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Fig. 3.4: Das Abfangproblem von einem „Geschoss“ durch ein anderes „Ge-
schoss“ und das dazugehörige Kollisionsdreieck. Der Winkel α = arctan[H/W]
ist hier der zeitlich leicht veränderliche Neigungswinkel der Verbindungslinie
beider Flugkörper zur Horizontalen. Das linke Target-Geschoss bewegt sich
mit 300 m/s, das rechte Abfanggeschoss mit 600 m/s. Zu jedem Zeitpunkt
muss die Beziehung vP sin[θP −α] = vT sin[θT +α] des Geschwindigkeitsdrei-
eckes (Sinussatz) erfüllt sein. Die zeitlichen Abstände der roten Markierungen
entsprechen genau einer Sekunde. Demnach findet bei etwa t = 5.07 s die
Kollision statt.

der zweiten Gleichungen heraus. Wir haben so trotz Gravitation die
reduzierten Bedingungen

vT cos[θT ] tc = W − vP cos[θP ] tc,
H + vT sin[θT ] tc = vP sin[θP ] tc.

Eliminieren wir hier den Kollisionszeitpunkt , so erhalten wir zunächst
die Relation

vP (H cos[θP ] −W sin[θP ]) + vT (H cos[θT ] +W sin[θT ]) = 0.

Durch eine trigonometrische Umformung folgt daraus die bemerkenswerte
Relation

(3.26)vP sin[θP − α] = vT sin[θT + α].

Der Winkel α ist dabei der Neigungswinkel der Verbindungslinie zwischen
den beiden Geschossen und der Horizontalen und berechnet sich zu

(3.27)tan[α] = H

W
.
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Die Gleichung (3.26) ist Grundlage der sogenannten Proportional-Navi-
gation, bei welcher sich das Projektil mit einer nahezu zeitlich konstanten
Peilung θp − α dem Zielobjekt nähert. Für einen Treffer muss dabei zu
jedem Zeitpunkt die Gleichung (3.26) erfüllt sein - zumindest wenn sich
beide in einer Wurfparabel bewegen.

MRSI-Verfahren: Dasselbe Ziel in beliebiger Höhenlage zum Abschussort
wird gleichzeitig von zwei Kugeln getroffen, die mit den Geschwindigkeiten
v1 und v2 und den Abgangswinkeln Θ1 und Θ2 abgeschossen wurden. Wie
groß ist der Unterschied in den Flugzeiten?

Diese Aufgabe knüpft an das moderne MRSI - Verfahren (Multiple
Rounds Simultaneous Impact) an, bei dem mit modularen Treibladungen
mehrere „Kanonenkugeln“ zu unterschiedlichen Zeiten und Elevationen
abgeschossen werden, aber gleichzeitig am entlegenen Ziel angelangen. Das
Verfahren eignet sich aber wohl nur für Einzelgeschütze und funktioniert
natürlich nur unterhalb der maximalen Schussreichweite.

Nehmen wir an, dass zum Zeitpunkt t = 0 die Kugel mit der Marke
1 abgeschossen wurde, zu einem etwas späteren Zeitpunkt t = δT die
Kugel mit der Marke 2. Dann müssen die folgenden zwei notwendigen
dynamischen Bedingungen für die Flugzeit T der Kugel „1“ und der
Zeitverzögerung ∆T für Kugel „2“

(3.28)v1 cos[Θ1]T = v2 cos[Θ2] (T − ∆T )

sowie

(3.29)v1 sin[Θ1]T − 1
2 g T

2 = v2 sin[Θ2] (T − ∆T ) − 1
2 g (T − ∆T )2

erfüllt sein. Zu diesen zeitlichen Bedingungen tritt noch die geometri-
sche Forderung, dass beide Wurfparabeln die Koordinaten des Zielortes
enthalten müssen. Dies schränkt die möglichen Werte von v1,2 und Θ1,2 er-
heblich ein. Aus den obigen Gleichungen lassen sich die zwei Unbekannten
t und T berechnen. Man erhält für die Flugzeit von Kugel 1

T = 2 v1 v
2
2 cos[Θ2] sin[Θ1 − Θ2]

g (v2
2 cos[Θ2]2 − v2

1 cos[Θ1]2) (3.30)

und die Zeitverzögerung für die Kugel 2

(3.31)∆T = 2 v1 v2 sin[Θ1 − Θ2]
g (v1 cos[Θ1] + v2 cos[Θ2]) .
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Genau dies ist auch das Ergebnis von C. Cranz in ([16]).

Aufgabe von C. Cranz: Ein Mörser wird auf die Spitze eines Burg-
turmes gerichtet, der Schuss trifft den Turm an seinem Fußpunkt in
der Horizontalebene durch das Geschütz nach t1 Sekunden. Ein zweiter
Schuss mit anderer Ladung (Anfangsgeschwindigkeit) und doppelter Ele-
vation trifft die Spitze des Burgturmes nach t2 Sekunden. Wie hoch ist
der Burgturm und wie weit ist er entfernt?

Die Unbekannten des Problems sind also die Höhe H des Turmes,
seine Entfernung W zum Geschütz, außerdem die beiden Abgangsge-
schwindigkeiten v1 und v2. Eine weitere von den obigen Größen abhängig
Unbekannte ist die erste Elevation Θ, die aber wegen tan[Θ] = H/W mit
der Höhe und Entfernung des Turmes verknüpft ist. Somit ergeben sich
folgende Bedingungen

v1 cos[Θ] t1 = W,

v2 cos(2Θ) t2 = W,

v1 sin[Θ] t1−, g t21/2 = 0,
v2 sin(2Θ) t2 − g t22/2 = H,

W sin[Θ] = H cos[Θ].

Wir haben so fünf Gleichungen für fünf Unbekannte. Die einzige physika-
lisch sinnvolle Lösung lautet

v1 = g t1 t2√
2(t22 − t21)

, v2 = 1
2 g t2

√
t22 + t21
t22 − t21

(3.32)

sowie

H = 1
2 g t

2
1, W = 1

2 g t
2
1

√
t22 + t21
t22 − t21

. (3.33)

Damit ist auch diese Aufgabe vollständig erledigt. Der erste Elevations-
winkel ergibt sich natürlich aus der Relation

tan[Θ] =

√
t22 − t21
t22 + t21

.

Wie allerdings C. Cranz auf diese Aufgabe gekommen ist, bleibt im
Dunkeln.
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4 Die klassische Ballistik mit
Luftwiderstand

Seit I. Newton wissen wir, dass der Luftwiderstand bei höheren Ge-
schwindigkeiten bis knapp unterhalb der Schallgeschwindigkeit in guter
Näherung proportional dem Quadrat der Geschwindigkeit sein muss. In
der hydrodynamischen Theorie spielt hier die Reynoldszahl der Strömung
um die Körperoberfläche (Grenzschicht) eine wichtige Rolle. Auf das
quadratische Gesetz werden wir uns im Folgenden auch beschränken.

4.1 Integration der Grundgleichungen
Die idealisierten Bewegungsgleichungen eines Projektils mit Eigenbe-
schleunigung a und einem reinen Luftwiderstandsgesetz der Form k v2

lauten dann
..
x =

(
a− k v2) .

x

v
, (4.1)

..
y =

(
a− k v2) .

y

v
− g, (4.2)

wo k ≡ kD ein Luftwiderstandsbeiwert (drag force) der Dimension einer
inversen Länge ist. Für die Geschwindigkeit gilt v2 = .

x2+ .
y2. Die eventuell

vorhandene Eigenbeschleunigung a (Base Bleed Geschoss; Rakete)
wirkt hier immer längs der momentanen Bahntangente. Zunächst werden
wir diese Eigenbeschleunigung aber Null setzen. Schon hier sieht man, dass
Raketenballistik und klassische Ballistik fließend ineinander übergehen.
Reine Raketenballistik werden wir in einem späteren Kapitel behandeln.
Die Gravitation wird als konstant und die Erde als eben angesehen.
Multipliziert man die erste Gleichung mit .

x, die zweite mit .
y und addiert

beide, so gilt wegen
d

dt
(v2) = 2v .

v = 2( .
x

..
x+ .

y
..
y) (4.3)
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die erste Grundgleichung

v
.
v + k v3 + g

.
y = 0. (4.4)

Berücksichtigen wir nun die elementaren Beziehungen
.
x = v cos[θ]; .

y = v sin[θ], .
x

..
y − .

y
..
x = v2 .

θ (4.5)

so lässt sich (4.4) auch schreiben als

(4.6).
v + k v2 + g sin[θ] = 0.

Aus dieser Gleichung folgt für die ballistische Kurve die Existenz eines
Punktes M minimaler Geschwindigkeit. Denn aus .

v = 0 folgt sofort

sin[θm] = −k v2

g
(4.7)

Da die Größe sin[θm] immer negativ ist, muss der Punkt M bei antriebs-
losem Flug stets hinter dem Gipfelpunkt (Vertex) auf dem absteigenden
Ast der ballistischen Kurve liegen. Nur bei der Parabel und beim Senk-
rechtsschuss sind Gipfelpunkt und M identisch.

Wird andererseits die erste Gleichung von (4.1) mit .
y, die zweite mit.

x multipliziert und dann die zweite von der ersten subtrahiert, so gilt
zunächst ..

x
.
y − ..

y
.
x = g

.
x (4.8)

und wegen (4.5) schließlich

(4.9)v
dθ

dt
+ g cos[θ] = 0.

Die beiden Gleichungen (4.6) und (4.9) sind die beiden Fundamental-
gleichungen der ballistischen Kurve, nun aber in den Größen v, der
Bahngeschwindigkeit, und dem Tangentenwinkel θ der Bahnkurve. Bei-
de Gleichungen lassen sich auch dynamisch einfach interpretieren. Die
Gleichung (4.6) beschreibt die Kräftebilanz in tangentialer Richtung an
der Bahnkurve, die Gleichung (4.9) normal zur Kurve. Das letztere sieht
man ein, wenn man die Bogenlänge s der Bahnkurve

ds = v dt (4.10)
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einführt. Dann kann man (4.9) auch schreiben als

v2 dθ

ds
+ g cos[θ] = 0. (4.11)

Die Größe ds/dθ stellt aber bis auf das Vorzeichen den Krümmungsradi-
us der Bahnkurve dar, so dass die Gleichung (4.11) das Gleichgewicht
zwischen Zentrifugalbeschleunigung und der Normalkomponente der Erd-
beschleunigung dargestellt. Auf ähnliche Weise kann man auch bei der
Bewegung einer Testmasse um einen Zentralkörper nach dem Newton-
schen Gravitationsgesetz zeigen, warum dieser Körper „schwerelos“ ist.
Für eine Kreisbahn ist dies natürlich trivial.

Die Bogenlänge spielt bei der Theorie der ballistischen Kurve eine
wichtige Rolle, denn wegen (4.10) kann man (4.5) auch als

d x = cos[θ] ds
d y = sin[θ] ds (4.12)

schreiben. Wäre hier die Bogenlänge s als Funktion des Winkels θ bekannt,
so ergeben die obigen Gleichungen nach einer Quadratur die ballistische
Kurve. Diese Idee ist tatsächlich durchführbar.

Die erste Bewegungsgleichung (4.1) lässt sich wegen (4.5) umschreiben
in

d

dt
{v cos[θ]} + k v {v cos[θ]} = 0. (4.13)

oder mit ds = v dt

d

ds
{v cos[θ]} + k {v cos[θ]} = 0. (4.14)

Aus dieser Gleichung folgt der wichtige Satz, dass in einer ballistischen
Kurve mit quadratischem Widerstandsgesetz die horizontale Geschwin-
digkeitskomponente exponentiell mit der Bogenlänge der Bahn abnimmt.
Dies gilt aber nur bei einem quadratischen Widerstandsgesetz. Hat am
Scheitelpunkt der Bahn die Kanonenkugel die horizontale Geschwindigkeit.
xS , so gilt bei einem quadratischen Luftwiderstand

.
x = .

xS e
−k s, (4.15)

wobei die Bogenlänge der Bahn vor dem Scheitelpunkt negativ, nach dem
Scheitelpunkt positiv gezählt wird.
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Mit der Abkürzung
u = v cos[θ] (4.16)

lautet die obige Relation am Abschussort

u[s] = v0 cos[Θ] e−k s, (4.17)

wo Θ jetzt den Elevationswinkel am Abschussort s = 0 und v0 die
Abschussgeschwindigkeit bedeuten.

Wir wollen jetzt eine einzige Differentialgleichung für v[θ] ableiten.
Dazu schreiben (4.6) nach der Kettenregel

(4.18)dv

dθ

dθ

dt
+ k v2 + g sin[θ] = 0.

Eliminieren wir hier die Größe dθ/dt mit Hilfe von (4.9), so erhalten wir
die fundamentale Gleichung

(4.19)g
dv

dθ
− k v3

cos[θ] − g v tan[θ] = 0.

Dieser Typ von Differentialgleichung ist charakteristisch für ein ballisti-
sches Problem. Es erweist sich hier als günstig, wieder die Geschwindigkeit
u über Grund einzuführen. Mit v = u/cos[θ] führt dies schließlich zu der
Bernoullischen Differentialgleichung1

(4.20)g cos[θ]3 du
dθ

= k u3.

Wir führen nun die Steigung p der Bahnkurve gemäß

p = tan[θ]; cos[θ] = 1√
1 + p2

; dθ = d p

1 + p2 (4.21)

ein. Damit lautet die Gleichung für u

g
du

d p
= k

√
1 + p2 u3. (4.22)

1Benannt nach Jacob Bernoulli, der sie 1695 diskutiert hat. Normalform y′ +
p[x] y = q[x] yn.
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oder nach Division durch u3

(4.23)g
d

d p

(
1
u2

)
+ 2 k

√
1 + p2 = 0.

Diese Differentialgleichung erster Ordnung ist integrabel und liefert u =
v cos[Θ] als Funktion des Parameters p. Man erhält dann durch direkte
Integration

(4.24)g/k

u2[p] + p
√

1 + p2 + arcsinh[p] = C.

Die Integrationskonstante C wird durch die Anfangsbedingung bestimmt.
Die transzendente Gleichung (4.24) stellt so den Hodographen der
einfachen ballistischen Kurve bei quadratischem Luftwiderstand dar2.
Denn es gilt wegen p = .

y/
.
x auch

g/k
.
x2 +

.
y
.
x

√
1 +

( .
y
.
x

)2
+ arcsinh

( .
y
.
x

)
= C. (4.25)

Am Scheitelpunkt der ballistischen Kurve ist die vertikale Geschwindig-
keitskomponente .

yS = 0. Bezeichnet man dann die dortige Horizontalge-
schwindigkeit mit .

xS , so gilt für den Hodographen

(4.26)
(√

g
k.

xS

)2

=
(√

g
k.
x

)2

+
.
y.
x

√
1 +

( .
y.
x

)2

+ arcsinh
( .
y.
x

)
.

Diese exakte Formel für den Hodographen der Wurfbewegung benutzte
J.H. Lambert 1767 zur Konstruktion einer echelle ballistique, eine
Art „Nomogramm“ ähnlich einem „Rechenschieber“ zur Berechnung
ballistischer Kurven ([30]). Ist die Funktion u[p] einmal bekannt, kann

2Dieses wichtige Integral des ballistischen Problems war schon J. Bernoulli 1719
bekannt, wurde dann 1745 von L. Euler und 1766 von J.H. Lambert neu
abgeleitet. 2012 hat im Wettbewerb „Jugend forscht“ der Abiturient Shouryya
Ray diese Gleichung neu gefunden, was in der Weltpresse als etwas übertriebene
Sensation darstellt wurde.
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Fig. 4.1: Der Hodograph (4.26) der ballistischen Wurfbewegung mit quadrati-
schem Widerstandsgesetz als Funktion verschiedener Werte der Scheitelpunkt-
geschwindigkeit vx bei vy = 0. Alle Geschwindigkeiten sind in Einheiten von√

g/k. Alle Kurven enden bei der skalierten konstanten Fallgeschwindigkeit
−1.

die ballistische Kurve in parametrischer Form berechnet werden. Mit
Hilfe von (4.9) folgt das Zeitdifferential

dt = −1
g

u dθ

cos2[θ] = −1
g
u[p] dp. (4.27)

und daraus die Bahnkurve

dx = −1
g
u2[p] dp; dy = −1

g
p u2[p] dp. (4.28)

Mit der Definition

f [p] = p
√

1 + p2 + ln[p+
√

1 + p2] (4.29)

31



gilt dann im Einzelnen

(4.30)dx = −v2
0
g

cos[Θ]2 dp
1 + k v2

0
g cos[Θ]2 {f [tan[Θ]] − f [p]}

und
(4.31)dy = −v2

0
g

cos[Θ]2 p dp
1 + k v2

0
g cos[Θ]2 {f [tan[Θ]] − f [p]}

sowie
(4.32)dt = −v0

g

cos[Θ] dp√
1 + k v2

0
g cos[Θ]2 {f [tan[Θ]] − f [p]}

.

Der Winkel Θ bezeichnet jetzt den Abgangswinkel der Kanonenkugel
beim Abschuss. Aus der letzteren Gleichung folgt durch Differentiation
nach der Zeit eine sehr einfache Differentialgleichung für p[t], auf die
wir noch zurückkommen werden. Auch die Gesamtgeschwindigkeit kann
wegen

v2 = u2 (1 + p2) (4.33)

durch
(4.34)v[p]2 = v2

0 cos[Θ]2 (1 + p2)
1 + k v2

0
g cos[Θ]2 {f [tan[Θ]] − f [p]}

ausgedrückt werden. Mit dieser Gleichung ist es zum Beispiel möglich,
den Punkt minimaler Geschwindigkeit längs der ballistischen Kurve zu
berechnen.

Damit lässt sich die ballistische Kurve parametrisch durch Quadraturen
darstellen. Im Prinzip ist dies auch die Lösung, die J. Bernoulli 1719 als
Erster fand. Vom praktischen Nutzen sind diese Differentiale eigentlich nur
für die Berechnung der beiden Asymptoten der Kurve. Für den Abstand
WA der senkrechten Asymptoten vom Abschussort gilt das Integral

(4.35)WA = v2
0
g

∞∫
− tan[Θ]

cos[Θ]2 dz
1 + k v2

0
g cos[Θ]2 [f [tan[Θ]] + f [z]]

Im Anhang (A.3) diskutieren wir dieses mathematisch sehr interessante
Integral etwas genauer in der komplexen Ebene. Eine Vereinfachung durch
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die Residuenmethode ist aber leider nicht möglich. Die andere Asymptote
ist die rückwärts fortgesetzte Gerade, die eine etwas höhere Elevation als
Θ am Abschussort hat.

Die Differentialgleichung (4.23) gilt für den Fall n = 2. Im allgemeineren
Bernoulli - Fall von 1719 gilt stattdessen (a = 0)

g
du

dθ
cos[θ]n+1 − c un+1 = 0. (4.36)

und in der Variablen p

g
d

d p

(
1

un[p]

)
+ n c

(√
1 + p2

)n−1
= 0. (4.37)

Hier sieht man sofort, dass der Fall n = 1 trivial ist. Für den Eulerschen
Fall n = 2 ergibt sich wieder (4.23). Die Fälle n = 3 und n = 4 wurden
von dem Mathematiker C.G. Jacobi 1840 auf elliptische Integrale zurück-
geführt. Der französische Mathematiker J.J. Drach (1871-1949), der
während des ersten Weltkrieges sich theoretisch mit Ballistik beschäftigte,
veröffentlichte 1920 eine Untersuchung, in der alle exakt integrierba-
ren Fälle eines vorgegebenes Luftwiderstandsgesetzes aufgelistet werden
konnten ([19]).

Das Problem der ballistischen Kurve ist ein Musterbeispiel dafür, wie
dynamische und geometrische Begriffsbildungen ineinander verwoben sind.
Wir wollen jetzt eine einzige Differentialgleichung nur für den Verlauf y[x]
der ballistischen Kurve mit quadratischem Widerstandsgesetz herleiten.
Nach den vorherigen Überlegungen gilt zunächst

u2 dθ

ds
+ g cos[θ]3 = 0. (4.38)

Andererseits können wir (4.20) umschreiben in

(4.39)g cos[θ]3 du
dθ

= k u3.

oder
(4.40)g cos[θ]3 d

dθ

(
1
u2

)
+ 2 k = 0.
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Fig. 4.2: Eine Illustration aus dem Buch ARCHITECTUR von Walther
Hermenius Ryff, Nürnberg 1547. Insbesondere hier über die „mathematischen“
und „mechanischen“ Künste. Hier erkennt man noch die alte dreiteilige „Im-
petushypothese“ aus Gerade – Kreis – Gerade. (Quelle: wikimedia commons)

Wegen (4.38) können wir dies auch

(4.41)u2 dθ

ds

d

dθ

(
1
u2

)
= 2 k

oder
(4.42)d

ds

(
1
u2

)
= 2 k

(
1
u2

)
schreiben. Nun gilt in der Kurvengeometrie für den Tangentenwinkel θ
und für die Kurvenkrümmung

(4.43)tan[θ] = y′; cos[θ] = 1√
1 + y′2

; dθ

ds
= y′′

(1 + y′2)3/2 .

Dabei gilt ds =
√

1 + y′2dx. Setzt man diese Formel in (4.38) ein, so
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folgt nach Streichung des gemeinsamen Faktors
√

1 + y′2 die Differenti-
algleichung der Bahnkurve

1
u2 = −y′′

g
. (4.44)

Im Falle u[x] = .
x[t] = konstant folgt hieraus die Galileische Wurfparabel

als allgemeine Lösung. Der zeitliche Verlauf in der Bahnkurve ergibt sich
aus dem Differential

dt =

√
−y′′[x]

g
dx. (4.45)

Die eigentliche Differentialgleichung der Bahnkurve folgt schließlich durch
Einsetzen von (4.44) in (4.42). Es gilt wegen ds =

√
1 + y′2dx eine

Differentialgleichung dritter Ordnung3

(4.46)y′′′ = 2 k
√

1 + y′2 y′′,

die mit den Anfangsbedingungen

(4.47)y[0] = 0; y′[0] = tan[Θ]; y′′[0] = − g

v2
0

sec[Θ]2

gelöst werden muss. Auffallend ist hier, dass die Gravitationsbeschleuni-
gung g gar nicht in die eigentliche Differentialgleichung der ballistischen
Kurve eingeht, sondern nur durch eine Randbedingung berücksichtigt
wird. Schon das erste Integral der obigen Differentialgleichung ist nicht
mehr algebraisch, sondern von transzendenter Form und zeigt die gan-
zen mathematische Schwierigkeiten des ballistischen Problems– z.B. im
Vergleich zum Keplerproblem der Planetenbahnbewegung.

Der wichtige ballistische Koeffizient k hat die Dimension einer inversen
Länge und zugleich die physikalische Deutung (n = 2)

k = 1
2 cw(M) AϱLuft

m
, (4.48)

wo A die Querschnittfläche, ϱLuft die Dichte der Luft, m die Masse
des Projektils und cw ein Widerstandsbeiwert bedeutet, der von der

3In den Papieren von L. Euler (1745) erscheint sie so noch nicht, dann aber bei
J.H. Lambert (1766), später auch bei I. Didion (1848).
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Fig. 4.3: Der Luftwiderstandsbeiwert cw(M) als Funktion der Geschwindig-
keit nach C.J. Cranz 1910 ([16]). Bis zur Schallgeschwindigkeit (≈ 340m/s)
(subsonic) ist der Wert konstant, im folgenden Übergangsbereich (transonic)
stark ansteigend und im Überschallbereich (supersonic) fällt der Wider-
standsbeiwert in etwa mit dem Potenzgesetz v−1/2 ab. Das quadratische
Widerstandsgesetz gilt somit streng nur im subsonischen Bereich - genauer
für Reynoldszahlen von 103 bis etwas über 105. Im supersonischen Bereich
gilt eher k(v) ∼ v3/2. Eine Patronenkugel mit 760m/s Anfangsgeschwindig-
keit hält sich nur etwa 1sec im Überschallbereich auf.

Form des Projektils und auch noch von der Geschwindigkeit (Machzahl)
abhängen kann. Hier ist es wichtig, ob die Geschwindigkeit unterhalb oder
oberhalb der Schallgeschwindigkeit liegt. Heutzutage weiß man, daß die
Abbremsung durch drei Faktoren bestimmt wird: Im Überschallbereich
durch den „Stoßwellenwiderstand“, dann durch die eigentliche Luftreibung
und schließlich durch den „Bodensog“ am hinteren Ende des Geschosses,
wo durch den Unterdruck Luftwirbel entstehen.

Eine ballistische Kurve besitzt im Allgemeinen zwei bemerkenswerte
Extremalpunkte auf ihrer Bahn. Der erste Punkt, der zeitlich kurz nach
dem Gipfelpunkt (Vertexpunkt) erreicht wird, ist der Punkt maximaler
Krümmung. Kurz danach folgt der Punkt minimaler Geschwindigkeit.
Nur bei der reibungsfreien Parabelbahn oder beim Senkrechtschuß mit
Luftwiderstand fallen beide Punkte im Vertexpunkt zusammen. Der
Punkt xv minimaler Geschwindigkeit folgt sofort aus der Gleichung (4.7)
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Fig. 4.4: Durch eine numerische Integration errechnete ballistische Kurven
mit den Bahnpunkten maximaler Krümmung (rot) und minimaler Geschwin-
digkeit (blau). Der Parameter µ = g/(k v2

0) beträgt hier 1/6 und die Elevati-
onswinkel gehen in 10er Schritten von 5 bis 55 Grad.

in transformierter Form zu

y′[xv] y′′[xv] = k
(√

1 + y′[xv]2
)3

(4.49)

Ganz analog gilt auch eine Bestimmungsgleichung für den Punkt xK

maximaler Krümmung. Für ihn folgt nach Definition für die Krümmung
einer Kurve durch Extremwertbildung

y′[xK ] y′′[xK ] = 2
3 k

(√
1 + y′[xK ]2

)3
. (4.50)

Durch numerische Integration der ballistischen Differentialgleichung (4.46)
lassen sich diese Punkte einfach bestimmen (siehe Fig. (4.4)).
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4.2 Reihenlösungen nach Euler
Schon im Jahre 1745 hat L. Euler versucht, die ballistische Kurve durch
ein Polynom darzustellen. Wir können seine Lösung schnell mit Hilfe der
Schlüsselgleichung (4.46) verifizieren. Wir machen einen Reihenansatz
der Form

y[x] = tan[Θ]x− g

2 v2
0

sec[Θ]2 x2 −
∞∑

k=3
ck x

k (4.51)

und bestimmen rekursiv die Koeffizienten ck. Die so entstehende unendli-
che Reihe dürfte aber divergent sein, wofür aber ein strenger Beweis fehlt.
Von diesen Schwierigkeiten zunächst abgesehen ergibt sich so für die bal-
listische Kurve bis zu Termen fünfter Ordnung in x die semikonvergente
Reihendarstellung

y[x] = tan[Θ]x− g

2 v2
0

sec[Θ]2 x2 − k g

3 v2
0

sec[Θ]3 x3

− k g

12 v4
0

{
2 k v2

0 − g sin[Θ]
}

sec[Θ]4 x4 (4.52)

− k g

60 v6
0

{
4 k2 v4

0 − 8 k g v2
0 sin[Θ] + g2 cos[Θ]2

}
sec[Θ]5 x5−

Die höheren Potenzterme in x wachsen in ihrer Länge sehr schnell an.
Die ersten beide Terme beschreiben aber die typische „Wurfparabel“ nach
Galileo Galilei - Torricelli, der nächste kubische Term dagegen eine reine
Abbremsung und Verkürzung der Bahn im Abstiegsbereich durch die
anfängliche Bremsbeschleunigung k v2

0 . Der Term vierter Ordnung in x
kann aber - je nach den Parametern - sein Vorzeichen wechseln, so dass
hier schon eine divergente Reihenentwicklung angedeutet wird.

Eine Regularisierung der Reihe ist wohl analytisch ausgeschlossen. Aber
man kann versuchen, für die divergente Entwicklung eine Art Borel’scher
Summation4 der ersten dominanten Terme der semikonvergenten Reihe
vorzunehmen (Borel-Transformation). Zu diesem Zweck betrachten wir

4E. Borel, (1871-1956).
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vereinfacht nur die Partialentwicklung

y[x] = tan[Θ]x− g

2 v2
0

sec[Θ]2 x2 − k g

3 v2
0

sec[Θ]3 x3

− k2 g

6 v2
0

sec[Θ]4 x4 − k3 g

15 v2
0

sec[Θ]5 x5−

Durch Ausklammern von k läßt sich leicht zeigen, dass diese ins Un-
endliche fortgesetzte Reihe durch den geschlossenen Ausdruck

(4.53)y[x] = tan[Θ]x− g

4 k2v2
0

(
e2 k sec[Θ] x − 2 k sec[Θ]x− 1

)
.

dargestellt werden kann. Die Näherung stellt sich für alle Parameter
k bei relativ kleinen Elevationen Θ als äußerst genau heraus. Wie zu
erwarten, sind die Schussweiten bei Flachbahnen etwas unterhalb der
exakten Werte.

Mit der obigen analytischen Darstellung kann man auch versuchen,
das alte Problem von Tartaglia, nämlich die Schussweite als Funktion des
Abschusswinkels Θ und der Abschussgeschwindigkeit v0 unter Einbezie-
hung des Luftwiderstandes zu berechnen. Euler gibt für dieses Problem
1745 eine Formel an, die aber in realistischen Fällen kaum anwendbar ist.
Aus der obigen Darstellung der ballistischen Kurve folgt nämlich durch
Umkehrung für die Wurfweite W die asymptotische Reihe

W = v2
0
g

(
sin[2Θ] − 4 k v2

0
3 g sin[2Θ] sin[Θ] + . . .

)
(4.54)

In normalen Fällen ist aber k v2
0 > g; also weit ab vom möglichen Konver-

genzkreis der obigen Entwicklung. Euler gibt auch eine Formel für den
Elevationswinkel Θm maximaler Wurfweite bei horizontalem Gelände an.
Mit Hilfe von Computeralgebra erhält man den asymptotischen Ausdruck

sin[Θm] = 1√
2

− 1
6
k v2

0
g

+O(k2), (4.55)

der mit dem von Euler von 1745 übereinstimmt. Allerdings verändert
sich der Koeffizient proportional k leicht, wenn man den Polynomgrad
der Approximation bei der ballistischen Kurve erhöht. Wir werden im
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Fig. 4.5: Die erste ausführliche analytische Darstellung einer ballistischen
Kurve durch Leonard Euler in seinem Werk „Grundsätze der Artillerie“
von 1745, indem er die experimentellen Resultate von Benjamin Robin aus
England in einer physikalischen Theorie mathematisiert. Das Hauptproblem
der Lösbarkeit durch Quadraturen wurde schon von J. Bernoulli 1719 in einer
Kontroverse mit Newton rein formal gezeigt.
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nächsten Kapitel durch numerische Integrationen und eine genauere ana-
lytische Untersuchung zeigen, daß in der obigen Reihe (4.55) anstatt des
Faktors 1/6 ∼ 0.1666 eher 0.0742 . . . stehen muss. Ursache hierfür ist die
merkwürdige Tatsache, daß für den fraglichen numerischen Koeffizienten
der Reihenentwicklung nach k eine Taylor - Entwicklung der ballistischen
Kurve nicht ausreichend ist.

Euler schließt seine Untersuchungen 1745 mit der Bemerkung:

Deswegen sind wir gezwungen, diese Untersuchung allhier
abzubrechen, und wollen wir dem Autori5 die völlige Ausfüh-
rung dieser Materie überlassen, als welche er uns in einer
besondern Schrift nächstens zu liefern versprochen hat.

Doch L. Euler wartete vergebens...

4.3 Reihenentwicklung nach Tempelhof
Die umfangreichsten Reihendarstellungen der ballistischen Kurve stam-
men wohl von G.F. Tempelhof6, die er 1781 in seinem Buch (siehe Fig.
4.6) darlegte. Er berücksichtigte in seinen Betrachtungen auch schon eine
variable Luftdichte mit der Höhe. Die Gleichung (4.9) kann mit (4.17) in
die Form

(4.56)dθ

ds
= − g cos[θ]3

v2
0 cos[Θ]2 e

2 k s

gebracht werden. Dies ist die Hauptgleichung von G.F. Tempelhof
aus dem Jahre 1781, um entweder exakt die Bogenlänge s der Bahn als
Funktion des Tangentenwinkels θ oder umgekehrt genähert den Winkel als
Funktion der Bogenlänge in einer Reihe darzustellen ([60]). Der zeitliche
Verlauf ist dann durch (4.17) oder

(4.57)ds

dt
= v0

cos[Θ]
cos[θ] e

− k s

5gemeint ist B. Robins, London 1742
6Georg Friedrich Tempelhof (auch Tempelhoff); (1737-1807). 1791 Gründer der

Artillerie Akademie im Palais Tempelhoff in Berlin; 1802 Generalleutnant; 1805
Schwarzer Adler-Orden.
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gegeben. Grundlage für Tempelhof ist nun diese Differentialgleichung
(4.56), die als Lösung den Hodographen der ballistischen Kurve als Funk-
tion der Bogenlänge hat. Mit der dimensionslosen Bogenlänge

S = 1
k
s (4.58)

und dem meist kleinen Parameter (µ < 1)

µ = g

k v2
0

(4.59)

lautet diese Gleichung dann

(4.60)dθ

dS
= −µ cos[θ]3

cos[Θ]2 e
2 S .

Wir lösen sie mit dem Ansatz

θ = Θ +
∞∑

n=1
cn µ

n
(
e2S − 1

)n (4.61)

Nach Bekanntwerden der cn ist der Tangentenwinkel der Bahn als Funk-
tion der Bogenlänge bekannt. Mit Hilfe dieser Reihe und (4.12) gelingt
es dann, den komplexen Zeiger exp(ı θ(S)) parametrisch als Funktion der
Bogenlänge darzustellen. Auf diese Weise folgt

eı θ(S) = eı Θ − 1
4 ı µ

(
e2S − 1

) (
e2ı Θ + 1

)
− (4.62)

1
16 µ

2 (e2S − 1
)2 (2 e3ı Θ + eı Θ − e−ı Θ)+ . . .

und nach Integration über die Bogenlänge für die komplexe Bahnkoordi-
naten ζ[S] = ξ[S] + ı η[S]

(4.63)
ζ[S] = S eı Θ − 1

8 ı µ
(
e2S − 1 − 2S

) (
e2ı Θ + 1

)
− 1

64 µ
2 (e4S −4e2S +4S+3

) (
2 e3ı Θ +eı Θ −e−ı Θ)+ . . .

Diese Reihen sind aber sehr langsam konvergent und man benötigt
mindestens Terme bis zur vierten Ordnung in µ, um für moderate Eleva-
tionswinkel Θ die Genauigkeit der recht kurzen Lambertschen Funktions-
darstellung (4.125) zu erreichen. G. Tempelhof selber berechnete die
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Fig. 4.6: Das Einbandbild des Buches Le Bombardier Prussien von G.F.
Tempelhof (Tempelhoff) aus dem Jahre 1781. Dieses Buch, in welchem man
die umfangreichsten Reihenentwicklungen zur ballistischen Wurfbewegung vor-
findet, stellt einen Höhepunkt und Abschluss in der theoretischen ballistischen
Forschung des 18. Jahrhunderts dar.
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Terme mit den reellen trigonometrischen Funktionen bis zur siebenten
Ordnung in µ, was ich mit Computeralgebra nachgerechnet habe und
dabei keinen Unterschied feststellen konnte. Bis zur dritten Ordnung
ergeben sich nämlich aus (4.62) die beiden Entwicklungen

cos[θ] = cos[Θ] − 1
4 µ

(
e2S − 1

)
sin[2 Θ]

−1
8 µ

2 (e2S − 1
)2 cos[3 Θ]

+ 1
96 µ

3 (e2S − 1
)3 (sin[2 Θ] − 7 sin[4 Θ])

+ . . .

und

sin[θ] = sin[Θ] − 1
4 µ

(
e2S − 1

)
(1 + cos[2 Θ])

−1
8 µ

2 (e2S − 1
)2 (sin[Θ] + sin[3 Θ])

− 1
96 µ

3 (e2S − 1
)3 (3 − 4 cos[2 Θ] − 7 cos[4 Θ])

− . . .

Es bleibt aus heutiger Sicht eigentlich rätselhaft, warum das Buch von
G.F. Tempelhof(f) damals als so fundamental angesehen wurde, da die
analytischen Reihenentwicklungen kaum Nutzen für die damalige prakti-
sche Artillerie hatten. Obwohl zunächst geheimgehalten, berichtete schon
1797 der Astronom und Hauptmann der preußischen Armee Johann
Philipp von Rohde über die Untersuchungen von Tempelhoff in seiner
eigenen Schrift über das ballistische Problem ([46]).

4.4 Reihenlösungen nach der Zeit
Die klassische Lösung hat den Nachteil, dass sie nur eine implizite Dar-
stellung der Bahnkurve in ihrem zeitlichen Verlauf darstellt. Es ist daher
wichtig, nach einer alternativen Darstellung des zeitlichen Verlaufs der
ballistischen Kurve zu suchen. Erste Versuche in dieser Richtung hat
schon G. Tempelhof in seinem Werk unternommen, neuere Untersu-
chungen stammen von G.W. Parker ([42] und auch R. Shouryya
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([50]). Die Grundgleichungen des Problem sind wieder
..
x+ k

√ .
x2 + .

y2 .
x = 0, (4.64)

..
y + k

√ .
x2 + .

y2 .
y + g = 0, (4.65)

die mit den Anfangsbedingungen
.
x[0] = v0 cos[Θ]; .

y[0] = v0 sin[Θ]. (4.66)

durch eine möglichst einfache Reihenentwicklung oder Zeitfunktionen t
gelöst werden müssen. Aufgrund der Struktur der Gleichungen als ein Sys-
tem von Differentialgleichungen erster Ordnung mit einem integrierenden
Faktor machen wir den Ansatz

{ .
x,

.
y} = v0 cos[Θ]

{
1
q
,
p

q

}
. (4.67)

Durch Einsetzen in die Bewegungsgleichungen erhält man nach Umfor-
mungen die neuen bemerkenswerten Gleichungen

(4.68).
p = − g

v0 cos[Θ] q

(4.69).
q = +k v0 cos[Θ]

√
1 + p2.

Dieses bemerkenswerte gekoppelte System muss für eine ballistische Kurve
mit den Anfangsbedingungen

q[0] = 1, p[0] = tan[Θ] (4.70)

gelöst werden. Aus beiden gekoppelten Gleichungen folgt leicht

(4.71)..
p+ k g

√
1 + p2 = 0.

Diese Schlüsselgleichung folgt auch aus dem Zeitdifferential (4.32) und
ist ihr direktes Äquivalent. Sie bestimmt den zeitlichen Verlauf der Bahn-
tangentenneigung am Flugkörper und muss mit den Anfangsbedingungen

p[0] = tan[Θ]; .
p[0] = − g

v0 cos[Θ] (4.72)
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gelöst werden. Das Vorzeichen der Wurzel in (4.71) ist von der Orien-
tierung des Geschwindigkeitsvektors abhängig. Der Winkel zwischen der
Zenitrichtung und der Geschwindigkeitsrichtung nimmt zeitlich
immer zu.

Mit Standardmethoden erhält man so leicht die Taylorreihen bis zur
dritter Ordnung in t

(4.73)p[t] = tan[Θ] − g sec[Θ]
v0

t− k g sec[Θ] t
2

2 + k g2 tan[Θ]
v0

t3

6 + . . .

und

q[t] = 1 + k v0 t− k g sin[Θ] t
2

2 +
k g
(
g cos[Θ]2 − k v2

0 sin[Θ]
)

v0

t3

6 − . . .

(4.74)

Mathematisch sind diese Reihen sehr interessant, aber für realistische
Fälle nur langsam konvergent. Für die praktische Berechnung von ballisti-
schen Kurven bieten sie so gegenüber der numerischen Integration keine
wirklichen Vorteile, zumal ja die Positionen des Körpers noch einmal
durch eine Quadratur gewonnen werden muss.

Die wichtigste Näherung, die sich aus den obigen Formeln ergeben,
nennen wir die sogenannte Lambertsche Approximation, da schon J. Lam-
bert auf diese im 18ten Jahrhundert gestoßen ist. Sie ist für Flachbahnen
der beste Kompromiss zwischen Genauigkeit und analytischem Aufwand.
Mit Hilfe der p[t] und q[t] Funktionen erhält man diese Approximation
mit Index 1 durch die lineare und quadratische Näherung in der Form

.
x1[t] = v0 cos[Θ]

1 + k v0 t
,

.
y1[t] =

v0 sin[Θ] − g t− 1
2 k g v0 t

2

1 + k v0 t
. (4.75)

Durch Integration ergibt sich dann

x1[t] = 1
k

cos[Θ] ln(1 + k v0 t), (4.76)

y1[t] = 1
k

(
sin[Θ] + g

2 k v2
0

)
ln(1 + k v0 t) −

− g

4 k2 v2
0

(
(1 + k v0 t)2 − 1

)
. (4.77)
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Für Flachbahnen mit Elevationen kleiner etwa 25 Grad sind diese Formeln
für einen beliebigen ballistischen Koeffizienten k völlig ausreichend. Aus
der ersten Gleichung für x[t] können wir zudem die Zeit t eliminieren
und in die zweite Einsetzen. Dann erhalten wir die rein algebraische
Kurvengleichung

(4.78)y1[x] = tan[Θ]x− g

4 k2v2
0

(
e2 k sec[Θ] x − 2 k sec[Θ]x− 1

)
.

Diese bemerkenswerte Gleichung ist für flache Flugbahnen eine sehr gute
Näherung und entspricht unserer Approximation bei der Summation von
einem analytischen Teil der Eulerschen Reihe (4.53). Die Wurfweite ist
in allen Fällen wenige Prozent zu kurz.

4.5 Alternative Approximationen
Die Lösung (4.78) für ballistische Flachbahnen wurde in ähnlicher Form
schon von J.H. Lambert 1765, später von Didion 1860 und schließlich
von Cranz in seinem Kompendium 1896 angegeben. Wie man leicht
feststellen kann, erfüllen die Geschwindigkeitsfunktionen (4.75) die halb
entkoppelten Differentialgleichungen ( .

x1 > 0)
..
x1 = −k sec[Θ] .

x2
1,..

y1 = −k sec[Θ] .
x1

.
y1 − g.

Diese Bewegungsgleichungen folgen aus den exakten Gleichungen, indem
man bei den häufig vorkommenden Flachbahnen den Term .

y2 im Wur-
zelausdruck für die Gesamtgeschwindigkeit vernachlässigt, dafür aber
einen modifizierten effektiven ballistischen Koeffizienten keff → k sec[Θ]
einführt, der den Luftwiderstand zu Beginn exakt und am Ende der
Bewegung genähert beschreibt, aber um den Gipfelpunkt der Bahn leicht
überschätzt. Die Flugbahnen sollten also alle etwas zu kurz ausfallen. Es
ist nun interessant, diese sehr gute approximative Lösung einerseits mit
der exakten numerischen Lösung der Bahnkurve, andererseits aber auch
mit den naiven Lösungen der alternativen Bewegungsgleichungen

..
x2 = −k .

x2
2,..

y2 = −k .
x2

.
y2 − g.
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zu vergleichen. Diese ergeben sich direkt ohne Korrekturterm durch
Vernachlässigung des .

y2 Terms in der Wurzel von v =
√ .
x2 + .

y2. Für
diese Approximation lauten die Lösungen

.
x2[t] = v0 cos[Θ]

1 + k v0 cos[Θ] t ,

.
y2[t] =

v0 sin[Θ] − g t− 1
2 k g v0 cos[Θ] t2

1 + k v0 cos[Θ] t . (4.79)

Durch Integration ergibt sich

x2[t] = 1
k

ln(1 + k v0 cos[Θ] t), (4.80)

y2[t] = 1
k

(
tan[Θ] + g sec[Θ]2

2 k v2
0

)
ln(1 + k v0 cos[Θ] t) −

−g sec[Θ]2

4 k2 v2
0

(
(1 + k v0 cos[Θ] t)2 − 1

)
. (4.81)

Für die ballistische Kurve ergibt sich in dieser Approximation

y2[x] = tan[Θ]x− g sec[Θ]2

4 k2v2
0

(exp [2 k x] − 2 k x− 1) . (4.82)

Durch Vergleich mit einer numerischen Integration der exakten Gleichun-
gen lässt sich die Güte der zwei Approximationen relativ leicht prüfen.
Mit den Skalierungen

{k x, k y} = {ξ, η}; τ =
√
g k t; (4.83)

und dem Parameter
ν = k v2

0
g

(4.84)

wurden so für vier unterschiedliche Elevationen mit ν = 25 Simula-
tionen durchgeführt. Die Abbildungen (4.7,4.8) zeigen die sehr gute
analytische Approximation der ballistischen Kurve durch die Funktion
(x1[t], y1[t]) (rote Punkte). Der Verlauf von (x2[t], y2[t]) (blaue Punkte)
ist deutlich schlechter. Beide Approximationen werden schlechter, wenn
der Elevationswinkeln größer als 25 Grad ist. Dagegen spielt die Größe
des Parameters ν kaum eine Rolle.
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Fig. 4.7: Vergleich einer numerischen Integration der Differentialgleichung
(4.117) (graue Scheiben) mit den analytischen Formel (4.76, 4.77) (rote
Scheiben) und (4.80, 4.81) (blaue Scheiben) im Falle k v2

0/g = 25.0 (Starke
Luftreibung). Die Längeneinheit sind (ξ, η) = k (x, y). In der oberen Graphik
ist der Elevationswinkel 20, in der unteren 25 Grad. Die Zeitschritte sind
∆τ = 0.1.

Zu Ende des 18. Jahrhunderts war diese relativ einfache asymptotische
Theorie von J.H. Lambert für die ballistische Kurve so gut wie unbe-
kannt. Einerseits ließt man in der Enzyklopädie des Christian Freyherrn
von Wolff (1679 - 1754) sehr kritisches über die Wurfparabel: Neue
Ausgabe aus den Anfangsgründen aller mathematischen Wissenschaften,
Marburg, 1797, Kapitel Anfangsgründe der Artillerie (redigiert von J.T.
Mayer, Seite 757):

Diese Lehren von der parabolischen Bahn der Geschützku-
geln würden bey der Anwendung ihre vollkommene Richtigkeit
haben, wenn keine Widerstand der Luft in Betrachtung zu
ziehen wäre. Allein dieser verursacht, daß die obigen Leh-
ren in der Ausübung sehr große Einschränkung leiden. Nur
in einem luftleeren Raume würden die Bahnen der geworfe-
nen Körper vollständig parabolisch seyn., aber in der Luft

49



0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

Ξ

Η

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

Ξ

Η

Fig. 4.8: Vergleich einer numerischen Integration der Differentialgleichung
(4.117) (graue Scheiben) mit der genäherten analytischen Formel (4.76) ,
(4.77) (rote Scheiben) und (4.80, 4.81) (blaue Scheiben) im Falle k v2

0/g =
25.0 (Starke Luftreibung). Die Längeneinheit sind (ξ, η) = k (x, y). In der
oberen Graphik ist der Elevationswinkel 30, in der unteren 35 Grad. Die
Zeitschritte sind ∆τ = 0.1.

selbst weichen sie desto mehr von einer Parabel ab, je größer
die Geschwindigkeit der geworfenen Körper, und folglich der
Widerstand der Luft ist. Daher obige Theorie einer großen
Verbesserung bedarf, wenn sie in der Ausübung zutreffen soll.
Bey dem Werffen der Kanonenkugeln kann sie fast gar nicht
angewendet werden, weil diese nämlich gewöhnlich eine große
Geschwindigkeit haben. Eher lässt sie sich beym Werffen der
Bomben anwenden, welche gewöhnlich keine sehr große Ge-
schwindikgeit haben, und man begnügt sich daher bey jenen
mit der parabolischen Theorie, so lange man keine bessere
für die Ausübung hat. Denn wenn gleich die größten Ma-
thematiker sich damit beschäftigt haben, [....] so fehlt diesen

50



Bemühungen doch noch gar vieles zur würklichen Ausübung.
Man kann indessen hierüber vorzüglich die oben angeführten
Schriften von Robins, Euler, dÁrcy, Tempelhof nachlesen...

Ein weiteres Zitat gibt uns 1811 der Major C.F. Seydell in seinem
Buch über den Gebrauch des kleinen Gewehres auf Seite 233 ([49]):

Das Gesetz, nach welchem die Bahn der Kugel etwa zu bestim-
men seyn möchte, kann hier nicht vorgetragen werden, indem
es zu den schwierigsten mathematischen Problemen gehöret,
und nach allen bisherigen Versuchen großer Mathematiker
noch nicht zu allgemeiner Zufriedenheit aufgelöst worden ist.

Schade, dass für diesen Gegenstand auch im Praktischen
so wenig geleistet worden ist! Außerdem, was in dem 3ten
Bande des Handbuchs des Herrn General von Scharnhorst
über diesen Gegenstand vorkommt, ist mir kein Werk bekannt,
worin man aus Versuchen etwas Bestimmtes über die Bahn
der Kugel angegeben hätte.

Und sucht man weiter in einer alten Bibliothek, so liest man bei G. von
Scharnhorst (1755 - 1813): Über die Wirkung des Feuergewehrs. Für
die Königlich preusssischen Kriegs - Schulen, Berlin 1813, in Paragraph
12:

Man siehet hieraus, dass die parabolische Theorie auf alle
Distanzen und bei allen Ladungen, welche bei den gewöhnli-
chen Mörsern in einer Belagerung vorkommen, sich anwenden
lässt; und da die Anwendung der übrigen Theorien weitläufige
Berechnungen erfordert und keine größere Genauigkeit leistet,
so kann man sie völlig entbehren.

Erst der französische General Isidore Didion beschreibt in seiner Traité
de ballistique von 1848 und in der Zweitausgabe 1860 die ballistische Kurve
sehr konsequent nicht mehr als Parabel, sondern durch die asymptotische
Darstellung (4.78) . Man hatte nun erkannt, dass beim Annähern an die
Schallgeschwindigkeit der Luftwiderstand nicht genau nach dem quadra-
tischen Gesetz verläuft und eine asymptotische Theorie zur genäherten
Beschreibung von ballistischen Flachbahnen völlig ausreichend ist.
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Zunächst kann die Flugzeit T der „Kanonenkugel“ bei einem horizon-
talen Gelände abgeschätzt werden. Mit (4.76) ergibt sich für die Flugzeit
bei vorgegebener Wurfweite W

T = 1
k v0

(
ek W sec[Θ] − 1

)
(4.85)

Diese Gleichung war auch schon J.H. Lambert bekannt. Um mit Hilfe der
asymptotischen Lambertschen Formel (4.78) die für praktische Anwendung
wichtige Wurfweite (Schussweite) in einem horizontalen Gelände bei
Flachbahnen abzuschätzen, muss man die nichttriviale Wurzel W oder
für die Rohrerhöhung den Winkel Θ der transzendenten Gleichung

0 =
(

tan[Θ] + g sec[Θ]
2 k v2

0

)
W −

− g

4 k2v2
0

(exp [2 k sec[Θ]W ] − 1) . (4.86)

bestimmen. Die Auflösung nach W gelingt relativ einfach durch Ein-
führung einer neuen transzendenten Funktion, die in der Literatur als
Produktlogarithmus oder Lambertsche W[z] Funktion bezeichnet wird.7
Diese Funktion erfüllt die Gleichung

W[z] eW[z] = z (4.87)

und spielt in der mathematischen Physik eine wichtige Rolle. Die Funktion
besitzt im Intervall z ∈ (−1/e, 0) zwei Äste, die mit W0[z] und W−1[z]
bezeichnet werden. Für das ballistische Problem benötigen wir den zweiten
Funktionsast. Mit den Hilfsvariablen

β = 1 + 2 k v
2
0
g

sin[Θ]

X = 2 k sec[Θ]W (4.88)

lautet die transzendente Gleichung (4.86)

X = ln[1 + β X]. (4.89)

7Hierzu muss bemerkt werden, dass J.H. Lambert selber nie diese nach Ihm benannte
W[z] Funktion auf das ballistische Problem angewendet hat.
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Θ◦ µ = 0.1 µ = 1.0 µ = 10.0
5 0.87991 0.15604 0.01717

10 1.23594 0.28073 0.03343
15 1.44232 0.38005 0.04838
20 1.57045 0.45779 0.06160
25 1.64604 0.51648 0.07278
30 1.68109 0.55786 0.08166
35 1.68205 0.58318 0.08804
40 1.65276 0.59333 0.09179
45 1.59563 0.58901 0.09284
50 1.51223 0.57077 0.09118

Tab. 4.1: Die dimensionslos skalierte fünfstellige Wurfweite k W als Funk-
tion des Elevationswinkels Θ und dreier Parameterwerte µ ≡ g/(k v2

0). Die
Zahlen sind in der siebten Stelle nicht gerundet und wurden durch genaue
numerische Integration der Differentialgleichung (4.117) gewonnen.

Die Lösung dieser transzendenten Bedingung ist

(4.90)X = −W−1

(
−e−1/β

β

)
− 1
β
.

Durch Einsetzen der Wurfweite W in (4.85) und Umformung ergibt sich
so

T = 1
k v0

(√
−βW−1

(
−e−1/β

β

)
− 1
)

(4.91)

Damit sind wesentliche dynamischen Größen der ballistischen Kurve in
dieser Näherung bekannt. Die obige Formel für die Wurfweite W ist
zwar exakt, aber nur im Sinne der Lambertschen Approximation erster
Ordnung für flache Elevationswinkel Θ < 25◦.

Mit dieser asymptotischen Formel ist ein praktisches Problem von
L. Euler aus dem Jahre 1745 gelöst. In der Tabelle (4.1) sind einige
Wurfweiten mit drei unterschiedlichen Parametern µ = g/(k v2

0) als Stan-
dard mit hoher akademischer Genauigkeit durch numerische Integration
berechnet worden. An diesen Zahlenwerten muss sich jede genäherte ana-
lytische Formel messen lassen. Durch die Unsicherheiten im ballistischen
Koeffizienten k(M) bleiben die Ergebnisse natürlich rein „akademisch“.
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Die Wurfweitenformel in dem 1781 zunächst unter Verschluss gehalte-
nem Buch Le Bombadier Prussien von G.F. Tempelhof sind allerdings
noch komplizierter als die Obige und in der Praxis wohl nie verwendet
worden. Ein interessanter Zeitzeuge zu diesem Problemkreis war der
Astronom F. X. von Zach (1754-1832), Direktor der Sternwarte auf
dem Seeberg bei Gotha. Anonym rezensierte er eine neuere ballistische
Untersuchung des Mathematikers J.F. Hennert aus Utrecht. Unter der
Rubrik Kriegswissenschaft liest man in der Allgemeine Literatur - Zeitung
von 1796:([67])

„Die vierte Abhandlung handelt von der Wurfweite der Bom-
ben. Seit Newton und Euler haben die Geometer nicht aufge-
hört, sich mit dieser ballistischen Aufgabe zu beschäftigen. Die
Arbeiten eines Bezour, Borda, Legendre sind bekannt; allein
nach der vollständigen Ernte, die der berühmte General v.
Tempelhof auf diesem Felde gehalten hat, bleibt nicht mehr
viel zur Nachlese übrig. Die Auflösung, die uns dieser gelehrte
Mann in seinem „Bombardier prussien“ von dieser Aufgabe
gegeben hat, ist ganz neu, und hängt mit keiner der bekannt-
gemachten zusammen.

So glänzend aber auch alle diese Untersuchungen sind, so
finden sich doch hin und wieder in der Ausführung eigene
Schwierigkeiten, und sie stimmen nicht immer mit den Er-
fahrungen und den angestellten Versuchen überein. Unser
Vf.(Hennert), der in tiefen mathematischen Kenntnissen
niemanden nachsteht, hat sich daher auch an dieses Problem
gewagt, und er gibt davon zwei sehr kurze Auflösungen, die
in der wirklichen Ausübung beim Bombenwurf genau genug
scheinen. Was die Bewegung der Kanonenkugel betrifft, so
ist ihm seine Untersuchung nur bis zu einer Elevation, die
nicht über 20 Grade geht, geglückt. Der Fall trifft wohl auch
selten, daß man Kanonen über 30 Grade hochrichtet; auch
können die Schüsse bei einer solchen Erhöhung nicht genau
beobachtet werden.

Um seine Leser nicht auf die Elementarwerke über diesen
Gegenstand zu verweisen, so wiederholt der gelehrte Vf. hier
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kürzlich die ersten Anfangsgründe der Ballistik in einem wi-
derstehenden Mittel, der Luft, und setzt alsdann seine Unter-
suchungen weiter fort: Die Grenzen einer Rezension erlauben
uns nicht, den Vf. hierin weiter zu verfolgen, allein auf des Ei-
gentümliche der Auflösung müssen wir den Leser aufmerksam
machen. Dahin gehört vorzüglich die §9. angegebene Approxi-
mationsmethode. Die Geometer, die bisher durch eine einzige
Kurve, oder durch ihre einzige Gleichung, die Bewegung der
Körper in einem widerstehenden Medio ausdrücken wollten,
haben sich von der Wahrheit zu weit entfernt. Unser Vf. be-
trachtet den aufsteigenden Zweig (Branches) dieser krummen
Linie ganz getrennt; er zeigt, wie man den aufsteigenden
Zweig der Kurve im widerstehenden Medio durch eine Annä-
herungan die Parabel finden könne, und beweist nachher, dass
der absteigende Zweig dieser Kurve dem auffsteigenden nicht
ähnlich sei, und gibt für diesen Zweig eine zweite Annäherung
durch die Parabel.

So weit ein Ausschnitt der Rezension. Die von Hennert benutzte
Approximation war übrigens keineswegs besser als die von Lambert.
Trotzdem zeigt der obige Artikel in einer Literaturzeitung, wie populär
das ballistische Problem gegen Ende des 18. Jahrhunderts noch war.

4.6 Numerische Integration
Da das ballistische Problem selbst im engeren Sinne ein schwieriges
analytisches Problem darstellt, können die entsprechenden Differenti-
algleichungen natürlich recht einfach numerisch integriert werden. Zu
diesem Zwecke schreiben wir die beiden Bewegungsgleichungen explizit

..
x+ k

√ .
x2 + .

y2 .
x = 0,

..
y + k

√ .
x2 + .

y2 .
y + g = 0 (4.92)

oder mit
vx = .

x; vy = .
y (4.93)
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einfacher
.
vx + k

√
v2

x + v2
y vx = 0,

.
vy + k

√
v2

x + v2
y vy + g = 0. (4.94)

Die naheliegende dimensionslose Skalierung besteht darin, als dimensi-
onslose Zeiteinheit

τ =
√
k g t (4.95)

einzuführen. Der Geschwindigkeitsvektor wird dann mit der Grenzge-
schwindigkeit

√
g/k gemäß

vx =
√
g

k
vξ; vy =

√
g

k
vη (4.96)

skaliert. Auf diese Weise ergeben sich die gekoppelten Gleichungen

v′
ξ(τ) +

√
vξ(τ)2 + vη(τ)2 vξ(τ) = 0,

v′
η(τ) +

√
vξ(τ)2 + vη(τ)2 vη(τ) + 1 = 0. (4.97)

Führt man noch den Parameter

ν = k v2
0
g

(4.98)

ein, welcher das Verhältnis der Bremsbeschleunigung der Luftreibung am
Abgangsort zur Erdbeschleunigung darstellt, können die obigen Gleichun-
gen mit den Anfangsbedingungen

vξ(0) =
√
ν cos[Θ], vη(0) =

√
ν sin[Θ]. (4.99)

numerisch gelöst werden. Will man auch die Bahnkurve ableiten, so
müssen noch zusätzlich die Gleichungen

vξ − ν ξ′ = 0, vη − ν η′ = 0 (4.100)

integriert werden. Bei dieser Skalierung ist zu bedenken, dass die physi-
kalischen Koordinaten nun durch die Skalierung

x = v2
0
g
ξ, y = v2

0
g
η (4.101)
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gegeben sind.
Auf diese Weise ist es relativ leicht möglich, zu demonstrieren, dass

die Relation des Hodographen der ballistischen Kurve

(4.102)CH = 1
v2

ξ

+ vη

vξ

√
1 +

(
vη

vξ

)2

+ arcsinh
(
vη

vξ

)
ein Integral der Bewegung ist. Auch die Evolute – das heißt die Ortslinie
der Mittelpunkte der Krümmungskreise der ballistischen Kurve – können
numerisch nach den Formeln

ξE = ξ −
vη(v2

ξ + v2
η)

vξv′
η − v′

ξvη

ηE = η +
vξ(v2

ξ + v2
η)

vξv′
η − v′

ξvη
(4.103)

berechnet werden. In der Figur (4.9) ist eine ballistische Normalkurve
mit µH = 1 und ihre zugehörige Evolute graphisch dargestellt. Ganz
grob kann man immer noch die alte Impetushypothese des spätantiken
Gelehrten J. Philoponos (∼ 490− ∼ 575) aus Alexandria erkennen:
Zwei Geraden als Asymptoten und - als spätere Verbesserung - zwischen
den beiden ein fast kreisförmiger Übergang. Das hatte I. Newton wohl
gegen Ende des 17. Jahrhunderts veranlasst, die ballistische Kurve als
eine Hyperbel aufzufassen.

Fast überflüssig noch zu bemerken, daß mit der komplexen Größe
(ı2 = −1)

v = vξ + ı vη (4.104)

die obigen Bewegungsgleichungen in der Form

(4.105)v′ + |v | v + ı = 0

geschrieben werden können, die mit der Anfangsbedingung

v(0) = v0√
g/k

eı Θ ≡
√
ν eı Θ (4.106)

gelöst werden muss.
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Fig. 4.9: Die Evolute (lila; Ortskurve der Berührungskreis - Mittelpunkte)
der ballistischen Normalkurve (blau), bei der die Geschwindigkeit am Schei-
telpunkt gleich der Grenzgeschwindigkeit

√
g/k ist. Man sieht hier, dass der

Punkt maximaler Krümmung nicht im Gipfelpunkt der Bahn liegt. Die alte
Impetushypothese („Trägheits - Hypothese“) des Mittelalters ist keine sehr
gute Approximation der Wurfkurve gewesen - aber im Prinzip asymptotisch
richtig.

4.7 Historische Zahlenbeispiele
Die Berechnung von Wurfweiten war gegen Ende des 18. Jahrhunderts ein
aktuelles Forschungsproblem.8 Als Beispiel sei hier die Tabelle (4.10) und
die rechnerische Auswertung (4.11) zur Schussweite einer französischen
Kanone aus dem Jahre 1771 vorgelegt. Wahrscheinlich handelte es sich
dabei um eine Vorläuferversion der Canon de 12 Gribeauval der französi-
schen Feldartillerie. Jean-Baptiste Vaquette de Gribeauval (1715 -
1789) war Begründer eines einheitlichen Systems von Geschützen, welches
auf älteren Konzepten von Justin Amedee Ethan de Musteve von
1765 aufbauten. Gribeauval ist auch bekannt für die Konstruktion der
Gribeauval - Lafette, die in den napoleonischen Kriegen eine große Rolle
spielte.

Die beste Anpassung an die alten historischen Datenpunkte liefert
8Angeblich konnte der französische Mathematiker P.S. Laplace 1789 durch Berech-

nung von Artilleriegeschossbahnen seinen Kopf in der Revolution retten. Über sein
Rechenverfahren ist aber nichts bekannt
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Fig. 4.10: Schussweiten von Kanonenkugeln, wie sie 1771 an der Artil-
lerieschule a la Fère in Frankreich gemessen wurden (1 Toise = 1.949 m).
Bei der verwendeten Kanone handelt es sich wahrscheinlich um einen 12
Pfünder. Hennert wertet 1796 mit zwei unterschiedlichen Näherungsformeln
diese Daten aus ([67]).

überraschend die numerische Integration der ballistischen Kurve mit den
Parametern

v0 ≈ 133.5m/s,
√
g/k ≈ 127.3m/s (4.107)

Die Qualität des Fits wird durch die Streuung σ = 27.9 m ausgedrückt.
Für die Lambert - Approximation gilt dagegen v0 = 120 m/s und

√
g/k ≈

176 m/s. Die Streuung beträgt hier σ = 34.8 m. Die exakte numerische
Integration bevorzugt gegenüber der analytischen Approximation eine
etwas höhere Anfangsgeschwindigkeit, dafür aber eine deutlich niedrigere
Endgeschwindigkeit. Alle Geschwindigkeiten liegen aber im subsonischen
Bereich. Bemerkenswert ist allemal, daß trotz sehr roher Wurfdaten aus
dem Jahre 1771 die Signatur einer ballistischen Kure sehr deutlich zu
Tage tritt. Die theoretischen „Fits“ der Ergebnisse nach Hennert aus
dem Jahre 1799 sind da schon etwas schlechter (grüne und orange Punkte).
Für den ersten Fit gilt die Streu-Qualität σ = 38.1 m, für den zweiten
σ = 36.4 m, also etwas besser. Die Hauptursache der Residuen dürfte
einerseits bei der Anfangsgeschwindigkeit v0 liegen, die abhängig von
Pulvermenge, chemischen Pulverqualität, Geschossmasse und Rohrlänge
ist, andererseits in einer Abdrift der Kanonenkugeln durch induzierte
Rotation (Magnuseffekt) oder Windscherung.
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Fig. 4.11: Auswertung der Schussweiten einer wahrscheinlich 12-pfündigen
französischen Artilleriekanone des Gribeauval-Systems von 1771, wie sie in
der Tabelle (4.10) dargestellt sind. Die blauen Punkte sind die originalen
Messdaten, rosaroten Punkte stellen den „best-fit“ der Wurfweiten dar, abge-
leitet aus einer numerischen Integration der ballistischen Kurve, die blaue
durchgezogene Linie ist die beste Lambert-Approximation und die grünen und
orangen Punkte repräsentieren die theoretischen Ergebnisse von Hennert
aus dem Jahre 1799.

Doch wie schon weiter oben durch das Zitat von G. von Scharnhorst
belegt, benutzte man in den meisten Fällen einfach die parabolische
Theorie, also für die Schussweite W und die Visiererhöhung Θ im ebenen
Gelände die Formeln (siehe 3.3)

W = v2
0
g

sin(2 Θ); sin(2 Θ) = gW

v2
0
. (4.108)

Doch diese Formeln sind natürlich für Kanonenkugeln bei höheren Ab-
schussgeschwindigkeiten unzureichend. Etwa 40 Jahre nach der Arbeit
von Hennert erhielt zu Beginn des Jahres 1842 der Direktor der Berliner
Sternwarte, J. Encke (1791 - 1865), ein ehemaliger Artillerieleutnant
der Befreiungskriege, vom Preußischen Generalstab ein Schreiben, in dem
er als Gutachter für eine Versuchsreihe zur Schussweite von Geschüt-
zen Stellung beziehen sollte. In einem Brief vom 24. Mai 1842 an den
Mathematiker C.F. Gauß schreibt er unter anderem ([23]):

60



Fig. 4.12: Die Canon de 75 modéle 1897 war ein leichtes französisches
Feldgeschütz gegen Ende des 19. Jahrhunderts, welches durch die Kombinati-
on verschiedener neuer Funktionen die Artillerie revolutionierte. Verwendung
einteiliger Patronenmunition, Nordenfelt - Schnellfeuerverschluss, Wieder-
spannabzug und eine Lafette mit Sporn. Der Brems - und Vorholmechanismus
der 75er war ein hydropneumatisches System. Mündungsgeschwindigkeit:
v0 = 530 [m/s] (Schrapnell) und v0 = 580 [m/s] (Sprenggranate). Reichwei-
te: 6800 − 11200[m]. (Quelle: wikimedia commons, PHGCOM, Musee de
l’Armee, Paris)

...Vor einigen Monaten erhielt ich von dem Chef der Artillerie
eine Aufforderung, mich über die Art zu äußern, wie die
Versuchsresultate der Artillerie zu behandeln seyen, um sowohl
einesteils Schusstafeln zu erhalten, welche auch die möglichen
Abweichungen geben, anderenteils bei künftigen Versuchen
eine Leitung zu haben und die Theorie zu vervollkommnen. Es
war dabei ausdrücklich bemerkt, dass man wünsche, ich solle
von der bisherigen ballistischen Theorie wo möglich keinen
Gebrauch machen, da sie sich ungenügend erwiesen. Als ein
Beispiel waren folgende Zahlen gegeben, welche, wie ich später
erfuhr, zu einem 50 Pf. Mörser, wo die Bombe etwa 8 1

2 Zoll
im Durchmesser hatte und das Geschoss etwa 6 Kaliber lang
war, gehörte.

Ob das Geschoss jetzt eine Kugel war oder schon mehr ein Langgeschoss,
geht aus den Angaben nicht klar hervor. Encke notiert jetzt eine Tabelle

61



£ [l] 1◦ 5◦ 10◦ 15◦ 20◦

2 xW 91.2 290.9 510.2 707.6 864.0
2 σW 4.5 14.7 14.5 21.1 23.5
5 xW 201.7 754.2 1303.1 1729.9 2212.0
5 σW 14.8 22.7 34.3 26.5 41.4
8 xW 358.0 1026.8 1716.8 2319.7 2832.4
8 σW 22.1 19.7 30.9 45.9 38.1

Tab. 4.2: Die Schusstafel des Preußischen Generalstabes von 1842, wie sie
Encke mitgeteilt wurde. Die erste Spalte enthält die Menge der Pulverladung
(die letzten beiden Werte von 8 Pfund waren nicht notiert und wurden hier
aus der energetischen Proportion v0 ∝ √

mP ulver abgeschätzt), die zweite
markiert die Schussweiten und die Standardabweichung in der Längeneinheit
[l] (1 Schritt = 0.75 [m]), die dritte bis siebente Spalte die entsprechenden
Werte für die fünf verschiedenen Elevationswinkel. Bei den Streuwerten ist zu
bedenken, dass erst ab 1860 drallstabilisierte Geschosse (spiralförmig gezogene
Kanonenrohre) verwendet wurden.

für die mittlere Schussweite und deren Streuung für 3 verschiedene Pulver-
ladungen und 5 verschieden Elevationswinkeln. Die Entfernungen waren
noch in Schritten angegeben. Ich nehme hier an, daß 1Schritt = 0.75m
ist. Für jeden Winkel wurden 15 Versuche gemacht, so dass insgesamt
5 mal 15 mal 3 gleich 225 Weitenmessungen durchgeführt wurden. Bei
den Versuchen wurde offenbar genau auf die Lage des Schwerpunktes
der Kanonenkugeln geachtet – die wohl genau mittig sein musste. J.
Encke schreibt: Man bestimmt jetzt die Lage des Schwerpunktes, indem
man die Kugeln auf Quecksilber schwimmen lässt. Und etwas später: Mir
sind Versuche mitgetheilt, wo unter ähnlichen Verhältnissen die Schuss-
weite bei Schwerpunkt unten 838.0 Schritt betrug, bei Schwerpunkt oben
aber 1362.1 Schritt. Dieser Effekt ist natürlich auf den Magnuseffekt bei
schnell rotierenden Kugeln zurückzuführen, den schon B. Robins kannte,
aber Encke nicht erwähnt. Der ehemalige Artillerieleutnant der Befrei-
ungskriege und Direktor der Berliner Sternwarte, J. Encke, machte in
seinem Brief an C.F. Gauß von 1842 dann über die Schusstabelle die
interessante Bemerkung:

Der Versuch, die bisher bekannten ballistischen Formeln mit
diesen Zahlen in Übereinstimmung zu bringen, ist mir nicht
geglückt. Wenn man die Konstante des Widerstandes und die
Anfangsgeschwindigkeit aus irgend zwei Werten bestimmt, so
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Fig. 4.13: Die Auswertung der simulierten Schusstabelle für 2 Pfund Pulver-
ladung. Der Fit mit der Formel (4.90) liefert die Werte v0 = 115 ± 2 [m/s]
und v∞ = 125 ± 5 [m/s].

weichen die übrigen viel zu stark ab.

Hier drängt sich die Frage auf: Welche ballistische Formel hat Encke
herangezogen und warum benutzt er nicht die Methode der kleinsten
Quadrate auf ALLE Werte der Tabelle, genau wie er es als Himmels-
mechaniker bei den Örtern von Kometen an der Himmelskugel immer
anwendet? Der Brief gibt hierüber keine Auskunft. In den Figuren (4.13,
4.14,4.15) habe ich diese Rechnung nachgeholt und man sieht eine relativ
gute Übereinstimmung mit der ballistischen Formel (4.90) – außer bei dem
unrealistischen Elevationswinkel von 1 Grad. Die Lambert-Approximation
scheint für Elevationen kleiner 20 Grad völlig ausreichend zu sein, was
auch durch eine numerische Integration für alle drei Fälle gezeigt wer-
den kann. Merkwürdig ist nur, daß die Grenzgeschwindigkeit bei (4.13)
etwas niedriger als bei den anderen fast übereinstimmenden Versuchs-
werten liegt. Wie das zu erklären ist, bleibt unklar. Zumindest scheint
die Pulvermenge und die Anfangsgeschwindigkeit durch die energetische
Beziehung

v2
0 ∼ mP ulver (4.109)

verknüpft zu sein, wie man es bei identischen Kugelmassen erwartet. Alle
Geschwindigkeiten lagen bei diesen Versuchen unter der Schallgeschwin-
digkeit - waren also subsonisch.

Erst die Erfindung des Ballistit im Jahre 1887 durch Alfred Nobel
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Fig. 4.14: Die Auswertung der simulierten Schusstabelle für 5 Pfund Pulver-
ladung. Der Fit mit der Formel (4.90) liefert die Werte v0 = 180 ± 2 [m/s]
und v∞ = 211 ± 10 [m/s]. Bei 15 Grad Elevation sieht man den von C.F.
Gauß bezweifelten Wert. Ob hier ungewöhnliche Windgeschwindigkeiten oder
eine starke Rotation der Mörserkugel (Magnuseffekt) eine Rolle gespielt hat,
bleibt unklar.

ermöglichte es, supersonische Abschussgeschwindigkeiten bei Geschützen
zu erreichen (siehe Fig. 4.12). Ballistit ist eine Weiterentwicklung der
Sprenggelatine und ist ein energiereiches rauchschwaches Pulver, welches
das Schwarzpulver (starke Rauchentwicklung) ersetzen konnte. Die Ab-
brenngeschwindigkeit des Ballistit ist extrem schnell, aber doch langsam
genug, um im Geschützlauf keinen zu hohen Druck entstehen zu lassen.

Interessant ist noch die Antwort von C.F. Gauß vom 15. August
1842 auf die damaligen Probleme ([23]): Für Ihre Mitteilung der Artillerie
Versuche bin ich ihnen sehr dankbar. Bessels Aburteilung ist unstreitig
zu schroff. Es gibt ohne Zweifel viele Fälle, wo man Beobachtungszahlen,
auch ohne sie mit einer Theorie bemeistert zu haben, mit Nutzen einer
Interpolation unterwerfen kann, in so fern man von der wirklichen Zu-
verlässigkeit aller jener Beobachtungszahlen eine völlige Überzeugung hat.
Von der anderen Seite ist kaum zu leugnen, dass gerade dieser Überzeu-
gung zumahl bei etwas verwickelten Gegenständen die volle Lebendigkeit
fehlen kann, wenn man nicht ihren Zusammenhang unter sich mit einer
Einsicht in ihre Theorie durchdringt...

Gauß drückt dann einigen Zweifel bezüglich bestimmter Daten aus
und bemerkt, dass man eigentlich sämtliche Versuchsbedingungen kennen
müsste. Er schlägt zudem vor, die Bahn der Kanonenkugel durch mehrere
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Fig. 4.15: Die Auswertung der simulierten Schusstabelle für wahrscheinlich
8 Pfund Pulverladung. Der Fit mit der Formel (4.90) liefert die Werte
v0 = 220 ± 3 [m/s] und v∞ = 194 ± 7 [m/s]. Eine Methode der numerischen
Integration liefert praktisch die gleichen Werte.
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Fig. 4.16: Die Abhängigkeit der Abschussgeschwindigkeit der Kanonenkugel
von der verwendeten Pulvermasse. Die energetische Beziehung (4.109) scheint
recht gut erfüllt zu sein.

schicklich aufgestellte Theodoliten trigonometrisch zu vermessen. Diese
von Gauß geforderte Vermessung wird heutzutage durch eine teure
MSP - Multi Sensor Plattform erledigt.9

In dem historischen Heimatbuch Meppen in alten Ansichten von H.
9Bei der Firma Rheinmetall Defence heißt es hierzu: Die Multi Sensor Plattform
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Heeren und D. Stockmann wird unter anderem über den Besuch von
Kaiser Wilhelm II in Meppen erinnert, der den Krupp’schen Schießplatz
1892 besuchte10. Es heißt dort:

Am 28. April 1892 traf der Kaiser mit großem Gefolge in
Meppen ein, wo das Schießen sofort begann: Zunächst wurde
aus leichten Kanonen, dann aber aus ganz schweren Schnell-
feuerschiffsgeschützen auf Scheiben geschossen und zwar auf
eine Entfernung bis zu 16 Kilometern. Nachmittags begann
das Schießen mit schweren Schiffsgeschützen. Der Kaiser äu-
ßerte zu Krupp11 seine große Befriedigung. Bei seiner Abfahrt
wurde ein Salut von 35 Schüssen abgegeben.

C. Cranz bezieht sich in seinem Lehrbuch von 1910, Seite 102, auf
dieses Ereignis und gibt mit vorgegebenen Anfangswerten eines speziellen
Geschützes die Eckdaten der ballistischen Kurve an. Wir wollen hier diese
Rechnung wiederholen und dann Vergleiche anstellen. Anfangsgeschwin-
digkeit und Elevation sind

v0 = 640m/s; Θ = 44◦. (4.110)

Die Art des verwendeten Luftwiderstandsgesetzes erfährt man nicht, nur
das die Grenzgeschwindigkeit bei

v∞ =
√
g

k
≈ 580m/s (4.111)

liegen soll. C. Cranz errechnet ohne Angabe eines Verfahrens die Eck-

MSP ist eine mobile, hoch präzise 3D Tracking-Messeinrichtung für das Registrie-
ren und Analysieren von ballistischen Flugbahnen und nicht ballistischen Flügen
mit den Genauigkeiten, die für einen Theodoliten im Feldeinsatz typisch sind. Die
Messresultate in Realzeit erreichen eine Winkelauflösung in Azimut und Elevation
von 0,6 Bogensekunden...

10Seit 1987 Wehrtechnische Dienststelle 91 (WTD91)
11Friedrich Alfred Krupp (1854-1902)
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Fig. 4.17: Der Besuch von Kaiser Wilhelm II am 28. April 1892 auf dem
Schießplatz bei Meppen. Zu sehen sind zwei Mantelringkanonen für die Marine
des ausgehenden 19. Jahrhunderts. (Quelle: BAAINBw, Aus der Geschichte
der WTD 91)

daten

Horizontale Schussweite 19066m
Flugzeit (T) 68.8 s

Aufprallgeschwindigkeit 380.4m/s
Spitzer Aufprallwinkel 58◦ 21′

Scheitelabzisse 10840m
Scheitelordinate (H) 6150m
Vertikale Asymptote 29300m

Mit der Näherung T =
√

8H/g ergibt sich mit g = 9.81m/s2 und
der angegebenen Scheitelhöhe H die Flugzeit zu T = 70.8s - also in
ausreichender Übereinstimmung. Doch die Ergebnisse lassen sich mit
einem rein quadratischen Widerstandsgesetz nicht exakt reproduzieren;
zumindest dann nicht, wenn man als Grenzgeschwindigkeit 580 m/s und
keine Abnahme der Luftdichte mit der Höhe annimmt. Lässt man den
Exponenten n des Widerstandsgesetzes vn und die Grenzgeschwindigkeit
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v∞ als freie Parameter, so lassen sich die horizontale Schussweite und die
Scheitelabzisse recht gut durch die Größen

n ∼ 2.2 und v∞ ∼ 469m/s (4.112)

darstellen. Hieraus kann man vorsichtig schließen, daß C. Cranz die
obigen Bahndaten mit dem quadratischen Widerstandsgesetz n = 2
berechnet hat. Der beste Fit ergibt sich dann für

v∞ ∼ 474m/s. (4.113)

Durch numerische Integration als auch durch die Integraldarstellung
ergeben sich dann übereinstimmend die folgenden Bahndaten:

Horizontale Schussweite 19062m
Flugzeit (T) 70.8 s

Aufprallgeschwindigkeit 338.9m/s
Spitzer Aufprallwinkel 61◦ 3′

Scheitelabzisse 10924m
Scheitelordinate (H) 6226m
Vertikale Asymptote 27961m

Wie man sieht, stimmen die exakten Werte mit denen von Cranz aus
dem Jahre 1910 mehr oder weniger gut überein. Mit der Näherung
T =

√
8H/g ergibt sich mit der bekannten Scheitelhöhe hier die Flugzeit

zu T = 71.3s, also in guter Übereinstimmung mit der numerischen Inte-
gration. Um 1900 war eben die Berechnung einer ballistischen Flugbahn
mit numerischen Hilfstafeln keine sehr leichte Aufgabe.

4.8 Die échelle ballistique des J.H. Lambert
Die ballistische Kurve ist im einfachsten Fall durch drei Randbedingungen
gekennzeichnet: Anfangsgeschwindigkeit v0, Elevation Θ beim Abschuss
und schließlich den ballistischen Parameter k. Wie lassen sich diese drei
Parameter möglichst kompakt in ihrem Einfluss auf eine ballistische Kurve
graphisch darstellen? Im Dezember 1767 begann J.H.Lambert, dieses
Problem mit Hilfe der umfangreichen numerischen Tabellen des H.F.
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von Grävenitz (1744-1764) durch seinen graphischen échelle ballistique
zu lösen. Im April 1773 begann er, seine Ergebnisse niederzuschreiben
und sie im selben Jahr und in einer Ergänzung 1775 zu veröffentlichen
([30]).

Betrachten wir zunächst die verschiedenen fundamentalen Längenein-
heiten des ballistischen Problems. Diese sind

v2
0
g

; v2
H

g
; 1

k
; v0√

k g
. (4.114)

Die Größe vH bezeichnet hier die Geschwindigkeit am Scheitelpunkt
der Bahn und k = kD den Luftwiderstandsbeiwert der Dimension einer
inversen Länge. In einem Memoire und einem Buch zwischen den Jahren
1765 - 1767 ging J.H. Lambert das „ballistische Problem“ neu an
und erlangte für die ballistische Kurve im engeren Sinne eine sehr gute
analytische Approximation, die besser als die Reihenapproximation von L.
Euler war. Wir benutzen zunächst die dritte Skalierung und definieren
wie J.H. Lambert 1766 eine Länge L gemäß

L = 1
k

(4.115)

und haben so die dimensionslosen Skalierungen

x = 1
2 k ξ; y = 1

2 k η. (4.116)

Damit lautet die Differentialgleichung (4.46) dritter Ordnung ohne den
Faktor 2

(4.117)η′′′ =
√

1 + η′2 η′′.

Die Anfangsbedingungen sind jetzt

(4.118)η[0] = 0; η′[0] = tan[Θ]; η′′[0] = −1
2 µ sec[Θ]2,

wobei µ durch

µ = g

k v2
0

=
(
v∞

v0

)2
≡


√
g

k

v0


2

(4.119)
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gegeben ist. Der Parameter stellt somit das Verhältnisquadrat von Grenz-
fallgeschwindigkeit zur Abgangsgeschwindigkeit dar. In der Artillerie
des 18ten Jahrhunderts dürfte dieser Parameter in der Größenordnung
von µ ≥ 1 gelegen haben, wenn wir für eine fallende Kanonenkugel
als Grenzgeschwindigkeit die Schallgeschwindigkeit annehmen wollen.
Aus diesem System kann man die beiden wichtigsten semikonvergenten
Reihenentwicklungen der ballistischen Kurve im engeren Sinne nach L.
Euler (1745) und J.H. Lambert (1766) ableiten. Zur Lösung machen wir

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.1

0.2

0.3

0.4

0.5

Ξ = 2 k x

Η
=

2
k

y

Fig. 4.18: Sechs verschiedene ballistische Kurven aus einer numerischen
Integration der Differentialgleichung (4.117) für µ = 1 und den Elevations-
winkeln von 25◦, 30◦, 35◦, 40◦, 45◦ und 50◦. Deutlich ist die Abweichung von
der „Wurfparabel“ zu erkennen. Maximale Schussweite liegt hier bei etwa 40◦.

mit dem Entwicklungsparameter µ (4.119) einen Störungsansatz einer
gradlinigen Bahn12

η[ξ] = tan[Θ] ξ +
∞∑

j=1
µj ηj(ξ) (4.120)

einschließlich der Anfangsbedingungen für j = 1

(4.121)η1[0] = 0; η′
1[0] = 0; η′′

1 [0] = −1
2 sec[Θ]2

und für alle anderen j ≥ 2
(4.122)ηj [0] = 0; η′

j [0] = 0; η′′
j [0] = 0.

12Diesen Ansatz hat J.H.Lambert so nicht gemacht
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Diese Entwicklung entspricht so einer Funktions - Iteration, wobei in
„nullter Näherung“ die gradlinige Bahn mit unendlich hoher Geschwin-
digkeit (µ = 0) durchflogen wird.

Einsetzen des obigen Ansatzes in die Differentialgleichung (4.117) führt
zu der Rekursion

η′′′
1 [ξ] − sec[Θ] η′′

1 [ξ] = 0,
η′′′

2 [ξ] − sec[Θ] η′′
2 [ξ] = 2 sin[Θ] η′

1[ξ] η′′
1 [ξ],

. . . = . . . (4.123)

Die höheren Rekursionen werden sehr schnell algebraisch unzumutbar
kompliziert. Wir beschränken uns hier also auf die erste Näherung, zu-
mal auch die obige asymptotische Entwicklung semikonvergent ist. Für die
Funktion η1[ξ] erhält man mit den entsprechenden Anfangsbedingungen

η1 = 1
2

(
1 + ξ sec[Θ] − eξ sec[Θ]

)
(4.124)

Damit ergibt sich in erster asymptotischer Ordnung für die analyti-
sche Darstellung der ballistischen Kurve in dimensionslosen Koordinaten
wieder der Ausdruck

(4.125)η = tan[Θ] ξ + 1
2 µ

(
1 + ξ sec[Θ] − eξ sec[Θ]

)
.

Dies ist aber die schon früher abgeleitete wohlbekannte Lambertsche
Approximation in einer leicht modifizierten Skalierung. J.H. Lambert
bemerkte, dass die ballistische Kurve deutlich einfacher und genauer
vom Gipfelpunkt (Scheitelpunkt) der Bahn aus berechnet und dargestellt
werden kann. Denn bei der Kurvenapproximation (4.125) zeigte sich, dass
im absteigenden Ast die Kurve gegenüber dem wahren Verlauf etwas zu
stark abbiegt und so systematisch eine etwas zu kurze Wurfweite anzeigt.
Auch die nächst höhere Iteration ändert daran nicht viel. Lambert legte
den Koordinatenursprung nicht an den Abschussort mit einem bestimmten
Elevationswinkel Θ, sondern in den Gipfelpunkt. Hier ist sicherlich eine
bessere Konvergenz zu erwarten. Aufgrund des Hodographen (4.25) ist es
zudem möglich, jede ballistische Kurve durch einen einzigen Parameter
µH bzw. νH gemäß

µH = g

k v2
H

, νH = k v2
H

g
(4.126)
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Fig. 4.19: Die fünf Figuren im Anhang des Buches über Ballistik von J.H.
Lambert aus dem Jahre 1766.

zu klassifizieren, wobei wieder g die Erdbeschleunigung, k der als konstant
angenommen Luftwiderstandsbeiwert und vH die horizontale Scheitelge-
schwindigkeit bezeichnet. Der Elevationswinkel Θ und die Abschussge-
schwindigkeit v0 oder µ (4.119) am Abschussort sind hier keine primären
Parameter mehr.

Es gilt mit (4.25) einfach

g

k v2
0 cos[Θ]2 + sin[Θ]

cos[Θ]2 + arcsinh [tan[Θ]] = g

k v2
H

. (4.127)

oder
(4.128)µH = (µ+ sin[Θ]) sec[Θ]2 + ln

[
tan

[
π

4 + Θ
2

]]
.

Mit Hilfe dieser Beziehung gelang es J.H. Lambert, eine Vielzahl unter-
schiedlicher Parameterkombinationen von µ und Θ am Abschussort auf
einen einzigen Parameter µH zurückzuführen.
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Mit (4.125) erhalten wir im Falle Θ = 0 die Lambertsche Scheitelpunkt
- Approximation

(4.129)η = 1
2 µH

(
1 + ξ − eξ

)
,

wobei hier durch die Wahl des Koordinatensystems die vertikale Koordi-
nate η[ξ] rein negativ ist. Durch den Parameter µH wird die nach unter
gerichtete ballistische Kurve gestaucht oder gestreckt, je nachdem wie
der Elevationswinkel und die Abschussgeschwindigkeit sich verhalten.

Die obige Skalierung hat den Nachteil, dass die klassische Wurfparabel
mit k → 0 eine Singularität darstellt. Wir wählen jetzt die neue Skalierung

L = v2
H

2 g (4.130)

und haben so die dimensionslosen Skalierungen

x = v2
H

g
ξ; y = v2

H

g
η. (4.131)

Da wir eine möglichst genaue Kurvenlandkarte zeichnen wollen, greifen
wir jetzt auf die exakten Integrale (4.30) und (4.31) der klassischen
ballistischen Kurve zurück und erhalten in der Scheitelpunktform

(4.132)ξ =
∫ 0

Θ

sec[θ]2 dθ
1 − νH (ln[sec[θ] + tan[θ]] + sec[θ] tan[θ])

und
(4.133)η =

∫ π/4

Θ

sec[θ]2 tan[θ] dθ
1 − νH (ln[sec[θ] + tan[θ]] + sec[θ] tan[θ]) .

Figur (4.20) stellt ein Replikat der ballistischen Bahnkurven von Lam-
bert aus dem Jahre 1773 dar. Es wurden acht Kurven mit den Para-
metern 0 ≤ νH ≤ 0.35 in Schrittweiten von 0.05 berechnet, die jede mit
einer Elevation von 45◦ starten. Alle haben die gleiche Scheitelpunkt-
geschwindigkeit vH . Die blauen Querlinien bezeichnen Punkte gleicher
Flugbahnwinkel θ in Schrittweiten von 5◦ Grad. Mit Hilfe des Hodo-
graphen und einem horizontalen Lineal lassen sich Bahnkurven und
Schussweiten bei Abgangswinkeln kleiner 45 Grad für unterschiedliche
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Abschussgeschwindigkeiten v0 mehr oder weniger genau ablesen. Ein Ver-
gleich dieses Replikats mit der alten schönen Figur (4.21) von Lambert
mit den Umrechnungstabellen zeigt sehr gute Übereinstimmung.

Der Integrand in den Ausdrücken (4.132) und (4.133) wird bei einem
Abgangswinkel von 45◦ singulär, wenn

(4.134)1 − νH

(√
2 + ln[1 +

√
2]
)

= 0

erfüllt ist. Daraus folgt die Bedingung

(4.135)νH <
1√

2 + ln[1 +
√

2]
∼ 0.4356...

Lambert hat in seiner échelle ballistique für Θ = π/4 den Wertebereich
von νH auf 0 ≤ νH ≤ 0.35 beschränkt. Schon der noch zulässige Wert
ν = 0.40 war wohl für die damalige Artillerie ohne Bedeutung.

4.9 Störungstheorie der Wurfparabel
Anstatt einer Geraden benutzen wir nun die Wurfparabel als erste Nähe-
rung der ballistischen Kurve. Hier sollte das Problem der Divergenz der
Wurzelfunktion im absteigenden Ast der ballistischen Kurve nicht mehr
auftreten. Wie werden die Wurfweite, die Scheitelhöhe und die Flugzeit
durch das Auftreten eines sehr kleinen Parameter k ≡ kD korrigiert?
Wie wird der Elevationswinkel durch dieses kleine k bei der maximalen
Wurfweite verändert?

Um diese Frage im Grenzfall k → 0 zu beantworten, betrachten wir
zunächst die asymptotischen Ausdrücke der Formel (4.90) im Grenzfall
ν ≡ k v2

0/g → 0 (verschwindend kleiner Luftreibung). Im Falle ν → 0
ergeben sich mit (4.88) die Entwicklungen

1
2

cos[Θ]
β

= 1
2 cos[Θ] − ν sin[Θ] cos[Θ] +O(ν2) (4.136)

und
−e−1/β

β
= −1

e
+ 2 ν2 sin[Θ]2

e
−O(ν3) (4.137)
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Für die Lambertsche Funktion im unteren Ast gilt nach Definition für
z → 0 die asymptotische Entwicklung

W−1

(
−1
e

(1 − z)
)

= −1 −
√

2z + . . . (4.138)

Mit alledem ergibt sich so im Limes ν → 0 für die Wurfweite die Formel

ξw = ν sin[2Θ] −O(ν2). (4.139)

Dies entspricht aber der parabolischen Theorie der ballistischen Kurve
nach Galilei - Torricelli. Bei maximaler Wurfweite muss der Elevations-
winkel

Θmax = π

4 {ν → 0} (4.140)

betragen.
Im allgemeinen Fall des Parameters ν = k v2

0/g muss die asymptotische
Formel (4.90) für die Wurfweite nach Θ differenziert und Null gesetzt
werden. Die nichttriviale Wurzel für den extremalen Winkel Θm ergibt
sich nach einiger Umrechnung mit (4.87) zu

(4.141)1 + 2 ν
sin[Θm] = exp

(
2 ν

(1 + 2 ν sin[Θm]) sin[Θm]

)
.

Die Lösung dieser transzendenten Gleichung liefert den extremalen Ab-
wurfwinkel in der Euler - Lambertschen Näherung, aber jetzt für den
ganzen Wertebereich (siehe Fig. (4.22)). Denn asymptotisch gilt mit der
obigen Relation wie in (4.55)

sin[Θm] = 1√
2

− 1
6 ν + . . . (ν → 0) (4.142)

Allerdings sind die so erhaltenen extremalen Elevationswinkel etwas
zu niedrig, wenn man sie mit den exakten Werten vergleicht, wie sie
sich aus einer numerischen Integration ergeben (siehe rote Kurve in
Fig. (4.22)). Damit zeigt das alte Problem von Tartaglia aus dem
Jahre 1537 unerwartete mathematische Schwierigkeiten, wenn man den
Luftwiderstand berücksichtigen will. Wie schon bei der Reihe (4.55) von
Euler aus dem Jahre 1745 erwähnt, lautet die korrekte asymptotische
Entwicklung im Limes ν → 0
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Fig. 4.22: Der optimale Elevationswinkel Θm als Funktion von 1/µ = k v2
0/g

für maximale Wurfweite im ebenen Gelände, wie er sich aus der transzenden-
ten Gleichung (4.141) ergibt (blaue Kurve), welche auf der Lambertschen
Approximation beruht. Zum Vergleich ist auch die exakte Abhängigkeit dar-
gestellt, wie sie sich aus einer numerischen Integration der ballistischen
Differentialgleichung ergibt (rote Kurve). Diese exakte Abhängigkeit wird
weiter unten durch die asymptotisch exakte Formel (4.165) gut approximiert.

sin[Θm] = 1√
2

− c1 ν + . . . (4.143)

in der die Zahl c1 nicht aus einer Polynomdarstellung, sondern nur mit
einer speziellen Störungstheorie berechnet werden kann. Wir werden
sehen, daß diese Zahl c1 = (6 −

√
2 log(1 +

√
2))/64 sein muss (siehe

4.159).
Für unsere Untersuchungen ist es günstiger, die Fundamentalgleichung

(4.46) anstatt mit (4.116) mit der alternativen dimensionslosen Skalie-
rungen

x = v2
0
g
ξ; y = v2

0
g
η; (4.144)

in die Form

(4.145)η′′′[ξ] = 2 ν
√

1 + η′[ξ]2 η′′[ξ].
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zu transformieren. Die Anfangsbedingungen sind

(4.146)η[0] = 0; η′[0] = tan[Θ]; η′′[0] = − sec[Θ]2,

mit dem dimensionslosen Parameter

ν = 1
µ

≡ k v2
0
g
. (4.147)

Um die Gleichung Im Grenzfall ν → 0 zu lösen, machen wir den Ansatz

η[ξ] = η0[ξ] + ν η1[ξ] + ν2 η2[ξ] + . . . (4.148)

und versuchen, die einzelnen Funktionen sukzessiv zu berechnen. Die
Lösung ohne Luftwiderstand (ν = 0) ist nämlich die Wurfparabel

η0[ξ] = tan[Θ] ξ − 1
2 sec[Θ]2 ξ2. (4.149)

Um die Funktion η1[ξ] zu bestimmen, wird der Ansatz (4.148) in die
obige Differentialgleichung eingesetzt und bis zur ersten Ordnung in ν
entwickelt. Für η1[ξ] ergibt sich auf diese Weise die Differentialgleichung

(4.150)η′′′
1 [ξ] + 2 sec[Θ]2

√
1 + (tan[Θ] − ξ sec[Θ]2)2 = 0,

welche mit der Anfangsbedingung η1[0] = η′
1[0] = η′′

1 [0] = 0 gelöst
werden muss. Striche bedeuten hier Ableitungen nach der Variablen ξ.
Die Gleichung lässt sich exakt integrieren, doch die analytische Lösung
füllt über eine Seite. Im Hinblick auf die Euler’sche Lösung ist es aber
interessanter, die Korrekturen zur Wurfweite W, zur Gipfelhöhe H und
zur Flugdauer T einer Kanonenkugel in erster oder auch zweiter Ordnung
in ν zu kennen. Im ebenen Gelände muss zunächst für die Wurfweite

η0[ξw] + ν η1[ξw] = 0 (4.151)

gelten. Mit dem Ansatz

ξw = sin[2Θ] − c1w[Θ] ν + . . . (4.152)

folgt mit Hilfe von Computeralgebra zunächst der Ausdruck

c1w[Θ] = − cot[Θ] η1[sin[2Θ]]. (4.153)
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Ausgerechnet ergibt sich

(4.154)
c1w[Θ] = 1

16

(
9 cos[Θ] − 5 cos[3Θ] + 2 cos[Θ]2(3

− 5 cos[2Θ]) cot[Θ] ln
[
tan

[
π

4 + Θ
2

]])
.

In physikalischen Koordinaten berechnet sich also die Wurfweite im
ebenen Gelände zu

W = v2
0
g

{
sin[2Θ] − c1w[Θ] k v

2
0
g

+O(k2)
}

(4.155)

Im Gegensatz zur Polynomentwicklung (4.54) von Euler ist (4.155)
exakt im Sinne der ersten Ordnung ν. Welcher Autor in der Geschichte
zur ballistischen Kurve die exakte asymptotische Entwicklung (4.155)
zum erstenmal mit der Winkelfunktion (4.154) aufgestellt hat, ist mir
nicht bekannt. Im Lehrbuch von C. Cranz ist sie zumindest nicht zu
finden.

Nun bereitet es auch keine großen Schwierigkeiten, die maximale Wurf-
weite xwm und den dafür optimalen Winkel Θm in erster Ordnung ν
abzuschätzen. Mit (4.155) folgt die maximale Wurfweite W mit dem
Ansatz

Θm = π

4 − c1Θ · ν +O(ν2) (4.156)
zu

(4.157)W = v2
0

g

(
1 − 1

16(7
√

2 + 3 ln(1 +
√

2)) k v
2
0

g
+ . . . )

)
,

und
(4.158)Θm = π

4 − 1
32(3

√
2 − ln(1 +

√
2)) k v

2
0
g

+ . . . .

Alternativ können wir auch für den extremalen Winkel

(4.159)sin[Θm] = 1√
2

− 1
64(6 −

√
2 ln[1 +

√
2]) k v

2
0
g

+ . . . .

schreiben. Diese Relation kann nun direkt mit derjenigen von Euler
(4.55) verglichen werden. Bei Euler steht als Vorfaktor von ν die Zahl
1/6, doch nach der exakten Funktionalmethode muss der Vorfaktor

(4.160)1
64(6 −

√
2 ln[1 +

√
2]) = 0.07427421124 . . .
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sein. Dies konnte auch durch numerische Simulationen bestätigt werden.
Der wirkliche Zahlenfaktor beträgt also weniger als die Hälfte des Wertes
von Euler aus dem Jahre 1745. Alternativ gilt natürlich auch

(4.161)tan[Θm] = 1 − 1
16(3

√
2 − ln[1 +

√
2]) k v

2
0
g

+ . . . .

Die obigen Formeln sind natürlich nur für kleine Parameter ν brauchbar.
Realistisch sind aber Werte von 1 bis 10. In diesem Fall gilt aber ein sehr
genaues Skalierungsgesetz. Mit einem zunächst freien „Fitparameter“ α
können wir nämlich für die Wurfweite sehr genau

W ∼ v2
0
g

(
1 + 1

16(7
√

2 + 3 ln[1 +
√

2])αν
)−1/α

(4.162)

setzen, mit α ∼ 1.395. Numerisch gilt also für die maximale Schussweite
bei nicht zu großen ν ≡ k v2

0/g - Werten

(4.163)W ∼ v2
0
g

(
1 + 1.094 k v

2
0
g

)−0.717

.

Eine ähnliche Formel gilt auch für den optimalen Elevationswinkel Θm.
Hier hat man sehr genau

sin[Θm] ∼ 1√
2

(
1 + 1

32(3
√

2 − ln(1 +
√

2))αν
)−1/α

, (4.164)

jetzt aber mit α ∼ 8.481. Numerisch gilt dann analog

(4.165)sin[Θm] ∼ 1√
2

(
1 + 0.891 k v

2
0
g

)−0.118

,

Die beiden Formeln (4.163) und (4.165) lösen das entscheidende Problem
der Artillerie des 18. und 19. Jahrhunderts: Ist der ballistische Koef-
fizient k einer Kanonenkugel bekannt, so liefert (4.163) bei bekannter
Entfernung die minimal notwendige Geschwindigkeit v0 oder die entspre-
chende minimal notwendige Pulvermasse mP , um das entfernte Ziel zu
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Fig. 4.23: Die maximale Wurfweite in Einheiten von v2
0/g als Funktion des

Parameters ν = k v2
0/g. Die durch numerische Integration gewonnenen Werte

unterscheiden sich praktisch nicht von der semianalytischen Formel (4.163).
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Fig. 4.24: Der optimale Abschusswinkel Θm für maximale Wurfweite als
Funktion des Parameters ν = k v2

0/g. Die durch numerische Integration ge-
wonnenen Werte unterscheiden sich praktisch nicht von der semianalytischen
Formel (4.165).

erreichen13. Hauptproblem war wohl einerseits die Rotation der Kanonen-

13Im 18. Jahrhundert wurde in etwa v0 ≈ √
mP log(a/b) gerechnet, wobei in a/b die

Rohrlänge (Kaliber) einging . Siehe Struensee: Anfangsgründe der Artillerie, Seite
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kugel (Magnuseffekt; gezogene Rohre gab es erst ab etwa 1860) und die
Qualität des Pulvers - nicht immer lieferte gleiche Pulvermasse mP auch
gleiche Abschussgeschwindigkeiten v0 (siehe [67]). War das v0(mP ) dann
bekannt, könnte man mit (4.165) den erforderlichen Elevationswinkel
Θm des Rohres berechnen. Im Prinzip entspricht dies dem Vorgehen
von vorgefertigten Schusstafeln. Die Formeln (4.163) und (4.165) waren
allerdings in dieser Form im 18. wie im 19. Jahrhundert nicht bekannt.

Doch zurück zur ballistischen Kurve. In ähnlicher Weise lässt sich auch
die Gipfelhöhe und deren Position in der Bahn bis zur ersten Ordnung in
ν berechnen. Mit dem Ansatz

ξH = 1
2 sin[2Θ] − c1H [Θ] ν + . . . (4.166)

folgt wiederum mit Hilfe von Computeralgebra zunächst der Ausdruck

c1H [Θ] = cos2[Θ] η′
1

[
1
2 sin[2Θ]

]
. (4.167)

oder explizit

xH = v2
0

2 g

{
sin[2Θ] − 4

3 ν cos[Θ] (1 − cos[Θ])3 + . . .

}
. (4.168)

Die eigentliche Gipfelhöhe yH ≡ H der Bahn (Vertex) ergibt sich rein
formal zu

(4.169)H = v2
0

2 g

{
sin[Θ]2 + 2 ν η1

[
1
2 sin[2Θ]

]
+O(ν2)

}
.

Auch die in erster Ordnung ν korrigierte Flugzeit T kann durch die
Funktion η1 und ihre Ableitung ausgedrückt werden. Auf eine explizite
Darstellung verzichten wir hier, bemerken aber noch, daß für beliebige
Elevationswinkel 0 < Θ < π/2 zwischen der Gipfelhöhe und der Flugzeit
die Relation

(4.170)H = 1
8 g T

2 {1 +O[ν]2
}

gilt. Denn der Zahlenfaktor proportional ν verschwindet gemäß

(4.171)8 η1

[
1
2 sin[2Θ]

]
− 4 η1 [sin[2Θ]] + sin[2Θ] η′

1 [sin[2Θ]] = 0.

313, 1760 ([54])
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Den Korrekturfaktor proportional ν2 könnte man analog durch eine
wesentlich aufwendigere Rechnung ableiten.

4.10 Asymptotische Zeitreihen
Bei Reihenentwicklungen nach der Zeit kann man entweder an analytische
Approximationen für kleine Zeiten t → 0 nach dem Abwurf oder an
„globale“ asymptotische Entwicklungen für t → ∞ denken. Die erste
Art dieser Entwicklung ist sicherlich eng an die Störungstheorie für
kleine ν ≡ k v2

0/g gebunden. Zur besseren Veranschaulichung werden wir
zunächst einen Spezialfall der ballistischen Kurve exakt lösen, nämlich
für den Elevationswinkel Θ = −π/2.

Im Falle Θ = −π/2 wird eine Kanonenkugel „senkrecht“ nach unten
abgeschossen. Die entsprechende Differentialgleichung für die Geschwin-
digkeitskomponente v[t] ≡ y′[t] lautet dann

v′[t] − k v[t]2 + g = 0 (4.172)

mit der Anfangsbedingung v[0] = −v0 (negatives Vorzeichen, weil nach
„unten“ geschossen wird). Die Gleichung lässt sich exakt integrieren und
man erhält

v[t] = −
√
g

k
tanh

[√
k g t+ atanh

[√
k

g
v0

]]
. (4.173)

Anhand dieser Lösung sieht man sofort, dass im Falle t → ∞ die Grenz-
geschwindigkeit

√
g/k erreicht wird. Zweckmäßig ist die obige Lösung

nur für v0 <
√
g/k, in welchem Falle die Funktion atanh[z] reelle Werte

liefert. Für den allgemeinen Fall ist es günstiger, die Formel durch eine
Transformation in die Gestalt

v[t] = −
√
g

k

v0 cosh[
√
k g t] +

√
g
k sinh[

√
k g t]

v0 sinh[
√
k g t] +

√
g
k cosh[

√
k g t]

(4.174)

zu bringen. Diese Formel kann leichter für alle Geschwindigkeitsverhält-
nisse ausgewertet werden.

Für kleine Zeiten t kann man die obige Formel in eine Taylorreihe
nach k entwickeln. Dies entspricht einer „Störungstheorie“ nach dem
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Parameter k. Man erhält sofort

(4.175)v[t] = −v0 − g t+ k

(
v2

0 t+ v0 g t
2 + 1

3 g t
3
)

+ . . .

Diese Entwicklung beschreibt sehr schön, wie die Fallbewegung durch den
Luftwiderstand in den ersten „Sekunden“ modifiziert oder abgebremst
wird. Sie zeigt aber auch, dass im Falle k v2

0 = g, bei der eine gleichförmige
Fallbewegung mit der Geschwindigkeit v0 einsetzt, diese nur „in erster
Näherung“ für kleine Zeiten beschrieben wird.

Diesen Nachteil sollte eine asymptotische Entwicklung für große Zeiten
t → ∞ nicht aufweisen. Eine asymptotische Formel ergibt sich sofort aus
(4.174) in der Form

v[t] = −
√
g

k

(
1 + 2

√
ν − 1

(
√
ν + 1) e2

√
k g t − (

√
ν − 1)

)
(4.176)

oder entwickelt

v[t] = −
√
g

k

(
1 + 2

∞∑
n=1

(√
ν − 1√
ν + 1

)n

e−2 n
√

k g t

)
. (4.177)

Bemerkenswert ist aber hier, dass diese Funktionsreihe für alle Zeiten
t gültig und konvergent ist. Durch Integration erhält man die Weg-
Zeitfunktionsreihe

y[t] = 1
k

ln
(

2
1 +

√
ν

)
−
√
g

k
t+

1
k

∞∑
n=1

(√
ν − 1√
ν + 1

)n
e−2 n

√
k g t

n
(4.178)

für einen Senkrechtschuß nach unten.
Diese Ergebnisse legen es nahe, auch für die allgemeine ballistische

Bewegung eine Reihenentwicklung nach der Zeitfunktion e−
√

bg t zu ver-
suchen. Dazu führen wir also anstatt der Realzeit t eine Pseudozeit -
Variable ζ gemäß der Gleichung

ζ = e−
√

k g t ≡ e−τ (4.179)
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ein. ζ = 1 bedeutet dann den Startpunkt, ζ = 0 den unendlich fernen
Zeitpunkt t → ∞. Außerdem gilt

−
√
bg dt = dζ

ζ
(4.180)

Die gekoppelten Bewegungsgleichungen des Geschwindigkeitsvektors lau-
ten dann

(4.181)ζ
dvx

dζ
−

√
k

g

√
v2

x + v2
y vx = 0,

(4.182)ζ
dvy

dζ
−

√
k

g

√
v2

x + v2
y vy −

√
g

k
= 0.

da die asymptotische Geschwindigkeit der ballistischen Flugbahn
√
g/k

ist, erhält man mit der Skalierung

vx =
√
g

k
vξ; vy =

√
g

k
vη, (4.183)

die dimensionslosen gekoppelten Gleichungen

(4.184)ζ
dvξ

dζ
−
√
v2

ξ + v2
η vξ = 0,

(4.185)ζ
dvη

dζ
−
√
v2

ξ + v2
η vη − 1 = 0.

Die Lösungen dieser Gleichungen nach ζ kann man in der asymptotischen
Form

vξ = A ζ + 1
8 A

[
A2 − 8B + 2A2 ln(ζ)

]
ζ3 + 1

256 A
[
3A4 − 16A2 B

+ 256 k2 + 4 (A4 − 32A2 B) ln(ζ) + 16A4 ln(ζ)2] ζ5 + . . .

(4.186)

und

vη = −1 + 2
[
B − 1

2 A
2 ln(ζ)

]
ζ2 − 2

[
B − 1

4 A
2 ln(ζ)

]2
ζ4

+
[

2
(
B− 1

4 A
2 ln(ζ)

)3
− 1

512 A
4 (A2 −24B+6A2 ln(ζ)

)]
ζ6 − . . .

(4.187)
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Fig. 4.25: Das asymptotische Verhalten des Geschwindigkeitsvektors bei einer
ballistischen Kurve im Falle ν = 1 und Θ = 35◦, normiert auf die Grenz-
geschwindigkeit

√
g/k. Die untere horizontale hellblaue Gerade zeigt, dass

sehr nahe vx[t] sich wie exp(−
√

k g t) verhält, während die obere dunkelblaue
Gerade die Proportionalität vy [t] +

√
g/k ∝ +t exp(−2

√
k g t) aufweist. Diese

Entdeckung war für den Autor Grund genug, eine asymptotische Theorie der
ballistischen Kurve nach den Potenzen der Zeitfunktionen exp(−

√
k g t) zu

entwickeln.

schreiben. Die Größen A und k sind zwei asymptotische Integrationskon-
stanten der gekoppelten Differentialgleichungen (4.184) und (4.185). Sie
hängen mit dem Hodographen der ballistischen Kurve (4.102) durch die
bemerkenswerte Beziehung

(4.188)CH = −1
2 + 4B

A2 + ln
(
A

2

)

zusammen. Der Wert der Konstanten CH wird ja bekanntlich durch
die Anfangsbedingungen festgelegt. Wegen ζ = e−τ lassen sich aus den
Reihenentwicklungen sofort folgende asymptotische Beziehungen ableiten

(4.189)lim
τ →∞

eτ vξ = A,
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Fig. 4.26: Der asymptotische Koeffizient A(ν, Θ) als Funktion des Elevati-
onswinkels Θ für die Parameterwerte ν = 1, 4, 9, 16. Werte durch numerische
Integration des Pfadintegrals abgeleitet.
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Fig. 4.27: Der asymptotische Koeffizient B(ν, Θ) als Funktion des Elevati-
onswinkels Θ für die Parameterwerte ν = 1/4, 1, 4, 9. Werte auch hier durch
numerische Integration abgeleitet.

(4.190)lim
τ →∞

e2τ (vη(τ) + 1) = 2B + 1
2 A

2 τ.

Die Gültigkeit dieser Relationen konnte durch numerische Integration sehr
schön bestätigt werden (siehe Fig. 4.25). Die Darstellung der Konstanten
A und k bereitet aber für den allgemeinen Fall Schwierigkeiten. Im
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Spezialfall Θ = −π/2 ergibt sich aber wie oben

B = 1 −
√
ν

1 +
√
ν

; A = 0. {Θ = −π/2} (4.191)

Wir bemerken noch, daß

1 −
√
ν

1 +
√
ν

= e−2 atanh(
√

ν) (4.192)

gilt. Diese Relation wird dann interessant, wenn wir den asymptotischen
Fall für den Senkrechtschuß Θ = +π/2 betrachten. In diesem Fall setzt
sich der Zeitablauf aus der Aufstiegszeit T1 und der dann folgenden
Zeit im freien Fall mit der Anfangsgeschwindigkeit Null zusammen. Wir
werden später noch zeigen, daß für die Aufstiegszeit zum Gipfelpunkt die
Formel

T1 = 1√
g k

arctan
(√
ν
)

(4.193)

gilt (siehe (4.201)). Wir benutzen nun die Formel (4.177), setzen in ihr
ν = 0, machen dann aber die Zeittransformation t → t − T1. In der
asymptotischen Formel ergeben sich dann für die Konstanten A und k
im Spezialfall des Senkrechtsschusses zu

B = e2 arctan(
√

ν); A = 0. {Θ = +π/2} (4.194)

Dabei gilt mit der imaginären Einheit ı2 = −1 die bemerkenswerte
mathematische Identität(

1 − ı
√
ν

1 + ı
√
ν

)ı

= e2 arctan(
√

ν). (4.195)

Dieser Ausdruck für den Parameter k gilt nur asymptotisch in der Zeit,
also nur für t > T1.

Für beliebige Zwischenwinkel Θ ist es möglich, eine Darstellung durch
ein Pfadintegral im Geschwindigkeitsraum zu gewinnen. Dazu erinnern
wir uns an die exakte Formel (4.17) und vergleichen sie mit (4.189). Dann
muss gelten

A(ν,Θ) = lim
t→∞

√
ν cos[Θ] exp

(√
k g t− k s[t]

)
(4.196)
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oder

(4.197)A(ν,Θ) =
√
ν cos[Θ] exp

(∫ ∞

0
(1 − |v(τ)|) dτ

)
.

Der Parameter B(ν,Θ) kann dann mit dem Hodographen ebenfalls als
Pfadintegral dargestellt werden. In den Figuren (4.26) und (4.27) sind
diese asymptotischen Parameter als Funktion des Elevationswinkels für
einige Werte von ν bildlich dargestellt.

4.11 Der senkrechte Schuss
Die Theorie des Senkrechtsschusses hat schon L. Euler in seinem Werk
über Artillerie von 1745 behandelt. Die Kanonenkugel wird dabei senk-
recht – wie eine Rakete – entlang des gravitativen Lotes in die Luft
abgeschossen. Das Ganze geschieht natürlich nur aus wissenschaftlichem
Interesse. Für diesen Fall vereinfachen sich die Differentialgleichungen
erheblich und man kann mit den elementaren analytischen Funktionen
die raum - zeitliche Bewegung exakt integrieren. Johann Bernoulli
hat offensichtlich solche ballistischen Experimente in Petersburg um 1735
durchgeführt und beobachtet, daß seine Kanonenkugel nach T = 34
Sekunden dicht am Abschussort wieder aufschlug. Macht man diesen
Senkrechtschuß heute mit einem G3 Sturmgewehr, so schlägt die Patrone
nach etwa T = 47 Sekunden wieder auf14.

Die Bewegungsgleichungen müssen nun in zwei Abschnitte aufgeteilt
werden: Den aufsteigenden Ast und den absteigenden Ast. Die beiden
unterschiedlichen Differentialgleichungen lauten jetzt

.
v = −k v2 − g aufsteigender Ast (4.198)
.
v = +k v2 − g absteigender Ast (4.199)

Im ersten Fall wirken Luftreibung und Schwerebeschleunigung in die
gleiche Richtung, im zweiten Fall in entgegengesetzte Richtungen.

14Die zurückkommende Patrone in einem solchen Senkrechtschuß hat dabei eine
Geschwindigkeit von etwa 150m/s.
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Aufsteigender Ast: Mit der Anfangsbedingung v(0) = v0 lautet die
Lösung der Gleichung (4.198)

v[t] =
√
g

k
tan

[
arctan

[
v0√
g/k

]
−
√
g k t

]
(4.200)

Die Zeitdauer T1 bis zum Gipfelpunkt ist dann durch v(T1) ≡ 0 oder

T1 = 1√
g k

arctan
[

v0√
g/k

]
(4.201)

gegeben. Für die Höhe h[t] folgt dann unmittelbar durch Integration und
h(0) = 0

h[t] = 1
k

ln

cos
[
arctan

[
v0√
g/k

]
−

√
g k t

]
cos
[
arctan

[
v0√
g/k

]]
 (4.202)

Die Höhe H ≡ h(T1) des Gipfelpunktes ergibt sich zu

H = − 1
k

ln
[
cos
[√

g k T1

]]
(4.203)

oder durch Umkehrung die wichtige Beziehung

(4.204)T1 = 1√
g k

arccos
[
e−k H

]
.

Setzt man andererseits in (4.203) für T1 die Formel (4.201) ein, so folgt
wiederum mit µ = g/(k v2

0) die exakte Formel für die Gipfelhöhe

H = 1
2 k ln

[
1 + k v2

0
g

]
. (4.205)

Eine ganz andere Formel gilt jetzt aber für den Rückfall auf die Erdober-
fläche.
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Absteigender Ast: Definiert man die nach „unten“ gerichtete Geschwin-
digkeit negativ, so ergibt eine erste Integration von (4.199) mit der
Anfangsbedingung v(0) = 0 die Lösung

v[t] = −
√
g

k
tanh

[√
g k t

]
(4.206)

Eine weitere Integration ergibt mit der Anfangsbedingung h(0) = H die
Fallhöhe als Funktion der Zeit zu

h[t] = H − 1
k

ln
[
cosh

[√
g k t

]]
. (4.207)

Nach der Fallzeit T2 schlägt die Kanonenkugel wieder auf dem Boden
auf, wobei gilt

H = 1
k

ln
[
cosh

[√
g k T2

]]
(4.208)

oder durch Umkehrung

(4.209)T2 = 1√
g k

arccosh
[
ek H

]
.

Die Formeln für T1 und T2 hängen durch die Transformation des ballis-
tischen Koeffizienten k → −k miteinander zusammen. Dies kann man
auch aus den entsprechenden Differentialgleichungen sehen. Es hätte also
eigentlich genügt, nur den aufsteigenden Ast zu betrachten und für den
absteigenden k durch −k zu ersetzen. Dies hat auch schon Euler 1745
gesehen und ausgenutzt.

Die gesamte Flugzeit T = T1 + T2 beträgt somit

(4.210)T = 1√
g k

(
arccos

[
e−k H

]
+ arccosh

[
ek H

])
.

Bei ballistischen Versuchen zu Beginn des 18. Jahrhunderts konnte man
diese Flugzeit eines Senkrechtsschusses recht genau messen, im Gegensatz
zur Gipfelhöhe der Kugel. So nahm der erst 20jährige L. Euler an
Versuchen teil, die 1727 in Sankt Petersburg unter Leitung von General
Gunther und dem damals 27jährigen D. Bernoulli durchgeführt
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wurden. Ergebnisse dieser Versuche veröffentlichte D. Bernoulli dann
in seiner Hydrodynamica 1748. Die damalige Flugzeit der verwendeten
kleinen Kanonenkugeln war etwa T ∼ 34 Sekunden. Es liegt daher der
Gedanke nahe, die obige Beziehung nach der Größe H umzukehren. Mit
Hilfe von Computeralgebra erhält man mit der dimensionslosen Zahl

λ = 1
8 k g T

2

die interessante Reihe

(4.211)
H = 1

8 g T
2
(

1 − λ2

22 · 3 · 5 + λ4

22 · 32 · 52 −

67λ6

25 · 32 · 52 · 7 · 13 + 1567λ8

26 · 34 · 53 · 13 · 17 − . . .

)
die in ähnlicher Form zum erstenmal L. Euler 1745 für ein modifiziertes
Widerstandsgesetz aufgeschrieben hat. Wie man sieht, gilt trotz Luftwi-
derstand recht genau zwischen der Gipfelhöhe und der Flugzeit die aus
der parabolischen Theorie bekannte Beziehung 8H = g T 2. Alle diese
Dinge waren auch in den preußischen Artillerieschulen gegen Ende des
19. Jahrhunderts bekannt: So schreibt W. Heydenreich in seinem Buch
von 1898 in Abteilung II, Seite 76 ([26]):

Bemerkenswert ist, daß die Formel H = g T 2/8 auch mit
großer Annäherung für die Flugbahn im lufterfüllten Raum gilt,
so daß man nach Einführung des Zahlenwertes von g = 9.81,
sobald die Flugzeit T (in Sekunden) gemessen ist, man in
H = 1.2T 2 die annähernde Steighöhe des Geschosses erhält.

Um ein konkretes Beispiel vor Augen zu haben, nehmen wir für die
Patrone eines G3 - Gewehres bei einem Senkrechtschuß eine Flugzeit von
TF = 47[s] an. Mit g = 9.81 [m/s2] ergibt sich so zunächst nach (4.211)
für die Steighöhe ohne Korrekturterm

H ≈ 2709m (4.212)

Um die Korrektur durch den Luftwiderstand zu berechnen, muss die
inverse Länge k abgeschätzt werden. Für sie gilt nach (4.48) die Formel

k ≈ cw(M) πD
2 ϱLuft

8mP at
, (4.213)
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Fig. 4.28: Die erreichte Gipfelhöhe H und die Flugzeit T beim Senkrecht-
schuß erfüllt trotz des Luftwiderstands sehr gut die klassische Beziehung
H = g T 2/8. Berechnet wurde der Kurvenverlauf mit der Umkehrung der
Formel (4.210).

Mit cw ≈ 0.15, D = 0.00762 [m], ϱLuft = 1.21 [kg/m3] und mP at =
0.0106 [kg] ergibt sich so

k = 3.90 · 10−4 [m−1],
√
g/k = 158 [m/s]. (4.214)

Damit folgt λ ≈ 1 und mit Korrekturterm nach (4.211) für die korrigierte
Steighöhe

H ≈ 2651m (4.215)

Die erreichte Gipfelhöhe wird also gegenüber (4.212) um 58m nach un-
ten korrigiert. Durch Radarmessungen wird diese Höhe auch bestätigt,
obwohl die Patrone sich etwa 2 Sekunden im supersonischen Bereich
aufhält. Der Unterschied zur klassischen parabolischen Theorie bezüglich
Steighöhe und Flugzeit ist also tatsächlich gering. Zum Abschluss sollen
noch zwei Formeln für die Anfangsgeschwindigkeit v0 und die Aufprall-
geschwindigkeit vT angegeben werden. Sie folgen leicht aus den obigen
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Fig. 4.29: Die erreichte Höhe einer 7.62 mm Patrone beim Senkrechtschuß
eines G3 Gewehres als Funktion der Zeit. Nach etwa 19.5 sec wird die
Gipfelhöhe von etwa 2600 Metern erreicht. Dieser Punkt stellt eine Art
Singularität dar, da die Formeln für das Weg - Zeit Gesetz vor und nach dem
Gipfelpunkt unterschiedlich sind.

Gleichungen und lauten

v0 =
√
g

k

√
e2 k H − 1, (4.216)

vT =
√
g

k

√
1 − e−2 k H . (4.217)

Beide hängen durch die Transformation k → −k zusammen. Mit den
obigen Daten ergibt sich kH ≈ 1.04 und so

v0 ≈ 417m/s, vf ≈ 148m/s. (4.218)

Die wahre Abschussgeschwindigkeit dürfte aber etwas höher sein, denn sie
liegt im supersonischen Bereich, wo der cw Wert etwas höher ist wie im
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subsonischen Bereich. Man kann von etwa 600m/s ausgehen. Siehe auch
Figur (4.29). Auch hier erkennt man eine gewisse „Symmetriebrechung“
zwischen dem aufsteigenden und dem absteigenden Ast.

Bevor wir im nächsten Kapitel den freien Fall aus sehr großer Höhe ge-
nauer betrachten, können wir zunächst die Formel für die Gesamtflugzeit
(4.210) mathematisch direkter herleiten. Hierzu betrachten wir nur den
absteigen Ast mit der Differentialgleichung (4.199). Dort betrachten wir
die Geschwindigkeit v → v[h] als Funktion der Höhe h. Wegen

(4.219)d

dt
= v

d

dh

folgt sofort
v
dv

dh
= k v2 − g {absteigenderAst} (4.220)

Diese Differentialgleichung können wir mit der Anfangsbedingung im
Gipfelpunkt v[H] = 0 lösen und erhalten sofort

(4.221)v[h] = −
√
g

k

√
1 − e2 k (h−H).

Für den aufsteigenden Ast brauch wir hier nur die Transformation k →
−k vornehmen. Die Kenntnis der Abschussgeschwindigkeit v0 ist dann
automativ in der Formel enthalten.

Die Fallzeit T2 erhält man einfach aufgrund der elementaren Beziehung

dh = v dt.

Damit erhält man das Integral

(4.222)T2 =

√
k

g

∫ H

0

dh√
1 − e−2 k h

.

Auswerten führt zu dem alternativen Resultat

(4.223)T2 = 1√
g k

arctanh
[√

1 − e−2 k H
]
.

Die beiden Formeln (4.209) und (4.223) sind zueinander äquivalent. Für
den aufsteigenden Ast braucht man nur k → −k zu setzen. Für die
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gesamte Flugzeit folgt somit alternativ

T = 1√
g k

{
arctan

[√
e2 k H − 1

]
+ arctanh

[√
1 − e−2 k H

]}
.

Dies entspricht letzendlich einer analytischen Fortsetzung. Die eigent-
lich Abschussgeschwindigkeit v0 am Boden können wir berechnen, aber
brauchen wir nicht zu wissen.

4.12 Senkrechter Schuss in große Höhen
Im vorherigen Kapitel wurde die Bewegung beim senkrechten Schuss unter
der Voraussetzung konstanter Luftdichte betrachtet. Dies ist bei einer
Gipfelhöhe von maximal 2000 Metern noch eine gute Näherung, wird aber
bei sehr großen Höhen mehr und mehr unrealistisch. In etwa 5500 Metern
Höhe hat sich die Luftdichte im Mittel schon halbiert. Dieser Effekt darf
also nicht mehr vernachlässigt werden. So konnte im Zweiten Weltkrieg
die 8.8cm - FlaK41 oder 12.8cm - FlaK40 Flugabwehrkanonen bei
einer Mündungsgeschwindigkeit von v0 = 820 − 1000m/s eine maximale
Schusshöhe von etwa H = 10400 − 14700 m erreichen. Wichtig war hier
die Berechnung der Flugzeit für eine gemessene Höhe, um daraus den
Vorhalt der Kanone und die Einstellung des Zeitzünders abzuleiten.

Die gegenüber (4.198) und (4.199) erweiterten Gleichungen einer senk-
rechten Aufwärts - oder Abwärtsbewegung mit abnehmenden Luftdichte
lauten für eine isotherme Standardatmosphäre (v = dh/dt)

.
v = −k exp [−h/HS ] v2 − g (Aufsteigen) (4.224)
.
v = +k exp [−h/HS ] v2 − g (Absteigen) (4.225)

Beim Aufstieg ist hier v positiv, beim Abstieg ist v negativ. Der bal-
listische Koeffizient k hängt normalerweise von der Machzahl und der
Reynoldszahl ab. Im folgenden werden wir ihn als Konstante ansehen,
was im hypersonischen Bereich keine schlechte Annahme ist. Die Luft-
dichte folgt in unserem Modell einer einfachen isothermen barometrischen
Höhenformel nach Laplace mit der Skalenhöhe HS . Ein typischer Wert
für die Skalenhöhe der Erdatmosphäre ist HS ≈ 8000[m]. Die Gravitati-
onsbeschleunigung g soll in unserem idealisierten Modell konstant sein.
Wendet man die Transformation

.
v = dv

dt
= dv

dh

dh

dt
≡ v

dv

dh
(4.226)
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an, so lautet die Gleichung für den absteigenden Ast (auf diesen können
wir uns hier beschränken)

(4.227)v
dv

dh
= k e−h/HS v2 − g.

Es scheint günstig, die Irrationalität der e-Funktion durch Einführung
einer neuen Höhenvariablen

(4.228)η = e−h/HS ; dη

η
= − dh

HS

zu eliminieren. Die Differentialgleichung für den absteigenden Ast nimmt
dann die Gestalt

(4.229)v
dv

dη
+ kHS v

2 − g HS

η
= 0

an. Ihre Lösung mit der Anfangsbedingung v[η0] = 0 lautet für positiv
definierte Abwärtsgeschwindigkeit

(4.230)v[η] =
√

2 g HS e
−k HS η

√
Ei[2 kHS η] − Ei[2 kHS η0]

mit
(4.231)η = e−h/HS , η0 = e−H/HS .

Die Funktion Ei[x] ist durch den Cauchy - Hauptwert des Integrals

Ei[x] =
∫ x

−∞

et

t
dt (4.232)

definiert. Die so gewonnene Formel kann sofort auch für den aufsteigenden
Ast durch k → −k abgeleitet werden. So ergeben sich für die Abgangsge-
schwindigkeit v0 und die Aufprallgeschwindigkeit vT die Formeln

v0 =
√

2 g HS e
k HS

√
Ei[−2 kHS ] − Ei[−2 kHS η0] (4.233)

vT =
√

2 g HS e
−k HS

√
Ei[2 kHS ] − Ei[2 kHS η0]. (4.234)

Nehmen wir als Zahlenbeispiel HS = 8000 m, für den aerodynamischen
Koeffizienten k = 10−4 /m von schweren Geschossen. Dann erhält man
mit der obigen Formel für die zu erreichende Gipfelhöhe von H = 14000
m eine notwendige Mündungsgeschwindigkeit v0 am Boden von etwa

(4.235)v0 ≈ 825 m/s
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Die eigentliche Flugzeit bis zur Gipfelhöhe H und zurück zum Boden
ergibt sich dann zu

T

T0
= 1

4

√
HS

H

1∫
η0

ek HS η dη

η
√

Ei[2 kHS η] − Ei[2 kHS η0]
+

1
4

√
HS

H

1∫
η0

e−k HS η dη

η
√

Ei[−2 kHS η] − Ei[−2 kHS η0]
, (4.236)

wobei

(4.237)T0 =

√
8H
g

die Flugzeit ohne Luftwiderstand bedeutet. Die Auswertung des Integrals
kann nur noch numerisch erfolgen. Es zeigt sich, dass mit Luftwiderstand
und k < 10−3 das Verhältnis T/T0 weniger als 1% über 1 liegt. Für die
Flugzeit kann man also den Luftwiderstand praktisch vernachlässigen.

4.13 Der freie Fall aus großer Höhe
Während allgemeine Situationen nur noch numerisch gerechnet werden
können, lässt sich der Spezialfall des freien Falles aus großer Höhe (z.B.
Stratosphäre) nach den Ergebnissen des vorhergehenden Kapitels noch
relativ einfach analytisch berechnen. Zwei Fragen sind hier besonders
interessant:

• a) In welcher Höhe erreicht der fallende Körper maximale Geschwin-
digkeit?

• b) In welcher Höhe ist die Abbremsung durch die Luft maximal?

Diese Fragen sollen hier kurz diskutiert werden.
Für den freien Fall aus sehr größer Höhe15 senkrecht zum Boden ist

jetzt die Gleichung (6.91) relevant.

15Angeregt wurde diese Untersuchung durch das Projekt RED BULL STRATOS
vom 14.10.2012
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Mit der so gewonnenen Formel lassen sich die zwei zu Beginn gestellten
Fragen vollständig beantworten.

Die maximale Geschwindigkeit wird zu dem Zeitpunkt erreicht, wenn
die effektive Beschleunigung .

v null wird. Dies führt mit (6.91) zu der
Bedingung

k ηm v[ηm]2 = g (4.238)

In den Abbildungen (4.30) und (4.31) kann man im Vergleich sehen, wie
der Punkt maximaler Geschwindigkeit mit der Linie a/g = 1 zusammen-
fällt. Wenn der fallende Körper die Maximalgeschwindigkeit erreicht hat,

0 2 4 6 8 10
0

5

10

15

z = h/HS

v/
g
/k

Fig. 4.30: Der Verlauf der Fallgeschwindigkeit in Einheiten von
√

g/k als
Funktion der Höhe z = h/HS für 10 anfängliche Fallhöhen H in Einheiten
von HS . Die Kennzahl α = 2 k HS hat hier den Wert 64. Maximal wird die
Geschwindigkeit dort, wo die Bremsbeschleunigung den Wert g erreicht.

wird er durch den Luftwiderstand genau mit der Erdbeschleunigung g
abgebremst. Doch dies ist nicht der Punkt maximaler Abbremsung. Erst
etwas tiefer in der immer dichter werdenden Atmosphäre erfährt der Kör-
per maximale Abbremsung. Man erhält das überraschende Resultat, dass
im Grenzfall sehr großer Fallhöhen der Punkt maximaler Abbremsung
durch die asymptotische Formel

(4.239)Ha = HS ln(2 kHS) − . . .
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Fig. 4.31: Der Verlauf der Bremsbeschleunigung in Einheiten von g als
Funktion der Höhe z = h/HS für 10 anfängliche Fallhöhen H in Einheiten
von HS . Die Kennzahl α = 2 k HS hat hier wieder den Wert 64. Auf der
horizontalen Linie a/g ≡ 1 schneiden die Kurven den Punkt maximaler
Geschwindigkeit.

gegeben ist. Diese Beziehung wurde so zum erstenmal von J.H. Allen
(1910-1977) und A. Eggers 1953 veröffentlicht („Blunt-Body“ („Stump-
fer Körper“); [1]).

Die so gewonnenen Ergebnisse wollen wir an den konkreten Daten
des Rekordsprunges von F. Baumgartner aus dem Jahre 2012 aus fast
40 km Höhe testen. Das Red Bull Stratos Team hat leider nur fünf
Datenpunkte der Fallkurve veröffentlicht, die in folgender Tabelle (4.3)
zusammengefasst sind: Mit der Erdbeschleunigung g = 9.8065m/s2

ergeben sich die wahrscheinlichsten Parameter zu

v∞ =
√
g

k
= 39 ± 7 [m/s]

HS = 6390 ± 530 [m]

Obwohl die Varianz dieser Parameter recht groß ist, stellt die erhaltene
Kurve die Datenpunkte relativ gut dar (siehe 4.32). Rechnet man mit
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Fig. 4.32: Die Fallgeschwindigkeit als Funktion der Höhe beim Fallschirm-
sprung von F. Baumgartner im Red Bull Stratos Projekt in Roswell, New
Mexico, am 14.10.2012. Die fünf veröffentlichten Datenpunkte des Rekord-
sprunges mit den entsprechenden Zeiten lassen sich recht gut an die theoreti-
sche Funktion (6.91) anpassen. Der rote Punkt bezeichnet die Höhe maximaler
Luftbremsung, bei der beim freien Fall von Baumgartner auch die „flat - spin“
Instabilität einsetzte. Die farbigen Bereiche kennzeichnen die 60, 70, 80 und
90 % Vertrauensbereiche der Kurvenanpassung.

t[s] H[m] v[m/s] vmodel[m/s] tmodel[s]
0 38969.4 0.0 0.0 0.0

34 33446.0 309.7 306.7 34.2
50 27833.0 377.1 360.4 50.5
64 22966.7 289.7 301.8 64.9

180 7619.3 79.2 72.7 179.6
260 2567.0 53.2 48.4 265.5

Tab. 4.3: Die bekannten Eckdaten des freien Falles von F. Baumgartner im
Red Bull Stratos Team aus etwa 40km Höhe vom 14.10.2012. Zum Vergleich
zeigen die beiden letzten Spalten die Best-Fit Daten des Modelles.

der wahrscheinlichsten Funktion die Zeiten nach der exakten Formel

(4.240)TF =
∫ H

0

dy

v[y] ≈

√
2H
g

(
1 + 1

2 kHS
HS

H
+ . . .

)
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aus, so ergeben sich anstatt der Zeiten in der Tabelle die Zahlen 0, 34.2,
50.5, 64.9, 179.6 und 265.5 [s]. Die analytische Näherung zeigt, dass die
Fallzeiten mit Luftwiderstand natürlich immer größer als im Vakuum
sind. Auch die Zeitmarken stimmen relativ genau mit den offiziellen
Angaben überein. Das quadratische Luftwiderstandsgesetz und/oder die
exponentielle Abnahme der Luftdichte mit der Höhe scheinen in dem
betrachteten Bereich genügend genau erfüllt zu sein. Die kleinen Abwei-
chungen der Daten von der theoretischen Kurve deuten allerdings auf
plötzliche unstetige Dichtesprünge der Luftdichte in der Stratosphäre hin.
Eine andere Möglichkeit ist natürlich die Abhängigkeit des Parameters k
von der Machzahl und der Reynoldszahl, die sich in diesen Höhen auch
sprunghaft ändern kann.

Die stärkste Luftabbremsung geschah nach dem Modell in einer Höhe
von etwa 22121[m] (t = 67 [s]) und betrug 1.64g. Man spürt hier so-
mit das 1.6 - fache seines Eigengewichtes. Kurz vor diesem kritischen
Punkt setzte dann die „flat spin“ Instabilität ein, die wohl durch den
transsonischen Punkt ausgelöst wurde und etwa 13[s] dauerte und bei
t = 77[s] durch Handbewegungen von F. Baumgartner wieder abge-
dämpft werden konnte (siehe (4.32)). Am 24. Oktober 2014 machte Alan
Eustaceer im Alter von 57 Jahren mit einem Fallschirm einen Strato-
sphärensprung aus 41.419 Metern Höhe und stellte so den Höhenrekord
von F. Baumgartner ein.

Abschließend noch die Fallzeiten für einen Körper (Menschen) mit der
Grenzgeschwindigkeit v∞ = 50 m/s und HS = 8000 m. Aus 10000 m
Höhe erhält man so eine Fallzeit von etwa 153 s, aus 20000 m Höhe 234
s, aus 30000 m Höhe 279 s und schließlich aus 40000 m Höhe ungefähr
306 Sekunden.

4.14 Die Superkanone
Während der Entwicklung der Artillerie im 19ten Jahrhundert entstand
auch der Trend, immer größere und leistungsstärkere Kanonen zu kon-
struieren. Dies spiegelt sich auch im Roman Autour de la lune von Jules
Verne aus dem Jahre 1870 wider. In dieser visionären Geschichte werden
drei Menschen und zwei Hunde mit einer Kanone (Kolumbiade) um den
Mond herum wieder zur Erde zurück geschossen. Im amerikanischen
Bürgerkrieg 1865 war zuvor die Rodmankanone zum Einsatz gekommen.
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Schon 1855 hatten die amerikanischen Ingenieure A. S. Lyman und J. R.
Haskell sogenannte Mehrkammergeschütze entwickelt, um sehr hohe
Abschussgeschwindigkeiten zu erreichen. Der französische Erfinder L.
G. Perreaux stellte auf der Weltausstellung 1878 ein funktionsfähiges
Mehrkammergeschütz vor. Als Mitte des Ersten Weltkrieges unter dem
Ingenieur F. Rausenberger von der Firma Krupp drei sogenannte Paris
- Geschütze mit überlangem Rohr (38 m) gebaut wurden, um Reichweiten
von über 100 km zu erlangen16, stellte man – entgegen den Ergebnissen
von Tartaglia und Euler – fest, dass der maximale Schusswinkel
bei über 50 Grad lag. Bei Abgangsgeschwindigkeiten von über 1000m/s
war wohl die klassische ballistische Theorie nicht mehr ausreichend. Der
Hauptgrund war schnell gefunden: Man hatte die Abnahme der Luftdichte
mit der Höhe gänzlich unterschätzt. Auch musste jetzt die Rotation der
Erde berücksichtigt werden.

Um dieses Ergebnis zu verstehen, müssen wir in der Schlüsselgleichung
(4.46) die Höhenabhängigkeit des ballistischen Koeffizienten berücksichti-
gen. Bei Annahme einer einfachen barometrischen Höhenformel mit der
Skala HS für den Dichteverlauf erhalten wir die erweiterte Modellglei-
chung

(4.241)y′′′ = 2 k e− y
HS

√
1 + y′2 y′′,

die wieder mit den Anfangsbedingungen

(4.242)y[0] = 0; y′[0] = tan[Θ]; y′′[0] = − g

v2
0

sec[Θ]2

gelöst werden muss. Wir skalieren aber zunächst die Gleichung in der
Form

x = v2
0
g
ξ; y = v2

0
g
η (4.243)

Mit dieser Skalierung lautet die Differentialgleichung der ballistischen
Kurve

(4.244)η′′′ = 2 ν e−β η
√

1 + η′2 η′′,

mit den vereinfachten Anfangsbedingungen

(4.245)η[0] = 0; η′[0] = tan[Θ]; η′′[0] = − sec[Θ]2.
16Am 29. März 1918 (Karfreitag) wurde durch Zufall in Paris eine Kirche während

eines Gottesdienstes getroffen, was eindeutig ein Kriegsverbrechen darstellte
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Fig. 4.33: Der extremale Elevationswinkel für maximale Wurfweite als
Funktion der Parameter ν = k v2

0/g und β = v2
0/(g HS). Die untere Kurve

entspricht β = 0 (konstante Luftdichte mit der Höhe). Die weiteren Kurven
entsprechen dann β = 5, 10, 15, 20, 25, 30, 35, 40. Deutlich ist zu sehen, daß
der Winkel für maximale Schussweite in bestimmten Sonderfällen über 45
Grad liegen kann.

Die beiden entscheidenden Parameter des Problems sind jetzt

ν = k v2
0
g

; β = v2
0

g HS
. (4.246)

Während ν wieder den am Boden gültigen ballistischen Parameter dar-
stellt, bestimmt der neue dimensionslose Parameter β den Einfluss der
mit der Höhe η stark abnehmenden Luftdichte. In der Abbildung (4.33)
sind für den Parameter β von β = 0 bis β = 40 in Schritten von 5
die verwickelten Zusammenhänge für den extremalen Abschusswinkel
Θm als Funktion von ν dargestellt. Die Werte können nur durch eine
numerische Integration der obigen Differentialgleichung gewonnen werden.
Der funktionelle Zusammenhang für β = 0 gleicht natürlich der schon
früher berechneten Funktion in Figur (4.24).

Seit 1936 hatte die Firma Krupp das schwere Eisenbahngeschütz Dora
oder Schwerer (langer) Gustav in drei Prototypen entwickelt. Die Rohr-
länge betrug bis zu 48 m. Im Jahre 1940 fielen der deutschen Besatzung
französische Pläne für eine Superkanone in die Hand, die nach dem Ersten
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Weltkrieg unter dem Eindruck des Paris-Geschütz entstanden sind. So
kam es 1943 zur Entwicklung von mindestens drei Typen der Kanone V3,
als Tarnname Hochdruckpumpe (HDP) genannt. Man konstruierte bis zu
150 m lange Rohre an einem etwa 50 Grad geneigtem Hang in Wollin bei
Misdroy im heutigen Polen in der Nähe von Stettin und schließlich die
größte Anlage bei Calais an der Atlantikküste. Die Mehrkammerkanonen
sollten mit v0 = 1500 m/s eine Reichweite von etwa 165 km haben, was
aber nie erreicht wurde. Bei einer Skalenhöhe von HS = 8 km entspricht
dies einem ballistischen Koeffizienten von k ∼ 2 ∗ 10−5 m−1. Heutzutage
sind diese technischen Entwicklungen kaum noch bekannt und haben
auch nur noch historischen Wert.

4.15 Vorhalt beim Bombenabwurf
Zu Beginn des ersten Weltkrieges 1914-1918 entstand durch die Ent-
wicklung von Kampfflugzeugen das Problem, mit einer Bombe aus einer
gewissen Flughöhe genau ein Ziel am Boden zu treffen17 . So schreibt im
noch zaristischen Russland der spätere berühmte Mathematiker, Meteo-
rologe und Kosmologe A.A. Friedmann (1888-1925) am 15. Februar
1915 in einem Brief von der Front:18

Lieber und hochverehrter Wladimir Andrejewitsch Steklow,
heute habe ich Ihre Postkarte erhalten und möchte Ihnen und
Olga Nikolajewna meinen herzlichen Dank dafür aussprechen,
dass Sie an mich gedacht haben und für das Geschenk, das ich
noch nicht erhalten habe, aber wahrscheinlich bald bekommen
werde. Mein Leben verläuft ziemlich ausgeglichen, abgesehen
von solchen Unfällen wie einer Granatsplitterexplosion in
sechs Metern Entfernung, der Explosion einer österreichischen
Bombe in unmittelbarer Nähe, die fast glücklich ausging, und
dem Herunterfallen auf mein Gesicht und meinen Kopf, was
zu einer aufgerissenen Oberlippe und Kopfschmerzen führte.
Aber man gewöhnt sich natürlich an all das, insbesondere an
die Dinge um sich herum, die tausendmal schrecklicher sind.

17es können aber auch Hilfsgüter sein, die einen bestimmten Bereich am Boden
erreichen müssen

18Alexander A. Friedmann: The man who made the universe expand. Cambridge
University Press 1993; paperback 2006; russische Erstausgabe 1988
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Kürzlich wurde ein gutes österreichisches Flugzeug beschlag-
nahmt; ich habe viel mit dem gefangenen Piloten gesprochen;
der Kerl war ziemlich schlau, so dass man aus dem Gespräch
mit ihm den Eindruck gewinnen konnte, dass in Österreich
alles in Ordnung sei, es genügend Truppen und Munition gäbe
und der Krieg seiner Ansicht nach mit ihrem Sieg enden wer-
de. Das ist natürlich Unsinn, aber dass sich der Krieg in die
Länge ziehen könnte, ist ziemlich wahrscheinlich. Ich persön-
lich denke nach Abschluss der aerologischen Mission daran,
das Fliegen zu erlernen; dies ist nicht mehr sehr gefährlich
und kann erfolgreich in der Meteorologie und insbesondere bei
synoptischen Beobachtungen eingesetzt werden.
Ich habe mich in letzter Zeit intensiv mit der Theorie des Bom-
benabwurfs beschäftigt, einer der Aufgaben des Großfürsten19.
Die Frage reduziert sich auf die folgenden Gleichungen:

du

dt
= −a u

√
u2 + v2,

dv

dt
= −g − a v

√
u2 + v2;

bei t = 0, u = c (etwa 20m/s bis 40 m/s) und v = 0; w und
v sind die Komponenten der Bombengeschwindigkeit entlang
der Koordinatenachsen, g ist die Erdbeschleunigung und a ist
ein Parameter, der die Form und das Gewicht der Bombe
charakterisiert. Die verwendeten Bomben lassen sich in zwei
Klassen einteilen: Die Bomben der ersten Klasse haben ein
sehr kleines a, die anderen einen Wert nahe 1.

Die von Friedmann verwendeten Gleichungen entsprechen den klassi-
schen ballistischen Gleichungen im subsonischen Bereich. Die Bezeich-
nungen sind von den unseren etwas abweichend. So ist sein Parameter a
wohl mit dem in diesem Buch verwendeten dimensionslosen Parameter
k v2

0/g identisch. a = 1 bedeutet dann, dass die asymptotische Fallge-
schwindigkeit

√
g/k der Bombe identisch der Fluggeschwindigkeit des

Flugzeugs entspricht. Friedmann versuchte nun die Gleichungen bei
kleinem a durch eine Reihenentwicklung, bei großem a durch die Approxi-
mation

√
u2 + v2 ∼ v zu lösen. Obwohl dieses Vorgehen durch die Praxis

19A. M. Romanow (1866-1933), Onkel von Nikolaus II., russischer Großfürst und
Admiral, organisierte im Ersten Weltkrieg die Armeefliegerkräfte, floh 1918 von
der Krim nach Frankreich
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Fig. 4.34: Die möglichen Flugbahnen einer fallenden Bombe für den Parame-
ter α = k v2

0/g von 0 bis 1 inSchritten von 0.125. Die roten Zahlen bedeuten
1000 α.

(numerische Integration und Erfahrung) einigermaßen bestätigt wurde,
war Friedmann mit dem Ergebnis in analytischer Hinsicht unzufrieden;
fand aber in der damaligen Literatur keine bessere Antwort.

Mathematisch ist die Bahnform einer ungelenkten “Bombe” mit Ab-
schusswinkel Θ = 0 von einem horizontal fliegenden Flugzeug analytisch
nicht ganz einfach zu berechnen. Natürlich ist immer eine numerische
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Quadratur in der Form

x = v2
0
g

m∫
0

dp

1 + k v2
0

g

(
p
√

1 + p2 + ln[p+
√

1 + p2]
) (4.247)

y = v2
0
g

m∫
0

p dp

1 + k v2
0

g

(
p
√

1 + p2 + ln[p+
√

1 + p2]
) (4.248)

möglich, wobei die y-Koordinate die Fallstrecke zum Boden bezeich-
net. Der Parameter m ist hier das momentane Gefälle der Bahnkurve.
Friedmann hat diese Kurven zumindest für kleine α genau berechnet.
Historisch äußerst kurios ist es, dass der österreichischer Meteorologe,
Geophysiker und Bergsteiger H. von Ficker (1881-1957) sich im Kriegs-
jahr 1915 im damaligen Galizien in der Stadt Przemysl an der heutigen
polnisch - ukrainischen Grenze in der berühmten Festung aufhielt, die
wohl zur gleichen Zeit Friedmann als zaristischer russischer Kampfpilot
bombadiert hatte. Im Jahre 1923 trafen sich beide in Berlin wieder, wo H.
von Ficker eine Professur bekommen hatte und Friedmann vergeblich
versuchte, A. Einstein zu treffen.

4.16 Über die Flugbahn von Golfbällen
Die Wurfparabel ist eine gute Näherung bei kleinen Geschwindigkeiten
und schweren Kugeln. Bei höheren Geschwindigkeiten oder größeren
Bällen müssen wir aber die Luftreibung berücksichtigen. Wie wir in der
Einleitung gesehen haben, war die Aufstellung des genauen Reibungsge-
setzes ein langer historischer Prozess. Die Bewegung eines rotierenden
Fußballes, Tennisballs oder Golfballes stellt ein besonderes Problem dar.
Im Folgenden wollen wir zunächst die Flugbahn eines Fußballes betrachtet
werden, dessen Luftwiderstand und Auftriebskraft bis zu Geschwindigkei-
ten von etwa 25m/s in guter Näherung linear mit der Geschwindigkeit
zunimmt. Aufgrund des Bernoulli-Theorems gilt für die Auftriebskraft als
Druckdifferenz zwischen unterschiedlichen Seiten des rotierenden Balles
auch bei höheren Geschwindigkeiten noch das lineare Widerstandsgesetz.
Wir postulieren also unter Berücksichtigung des Magnuseffektes nach
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(2.1) die Bewegungsgleichungen
..
x = −fD

.
x− fL

.
y

..
y = −fD

.
y + fL

.
x− g.

Die als konstant angenommenen Parameter fD (drag force) und fL (lift
force) stellen eine Art inverse Relaxationszeit dar. Zudem ist fL hier
direkt proportional der Winkelgeschwindigkeit ω des rotierenden Balles.
Voraussetzung für die obigen Gleichungen ist, dass die Rotationsachse des
Balles parallel zum Boden und senkrecht zur Schussrichtung liegt (also
keine seitlich abweichend Bananenflanke). Der inverse Zeitparameter fD

ist immer positiv, während fL je nach Rotationsrichtung des Balles positiv
(backspin) oder negativ (topspin; slice) sein kann. Durch Einführung
der komplexen Zahlen

(4.249)z = x+ ı y, f = fD − ı fL

lassen sich die obigen Gleichungen in die einzige Gleichung

(4.250)..z + f .z + ı g = 0

vereinigen. Ihre Lösung mit der Anfangsbedingung z[0] = 0 und z′[0] =
eı Θ lautet (ı2 = −1)

(4.251)z = v0

f eı Θ (1 − e−f t
)

− ı g

f2

(
e−f t + f t− 1

)
.

Die Formel besteht aus zwei Teilen: Der erste Teil proportional v0 be-
schreibt eine spiralförmige Bewegung in den Fixpunkt (Pol) v0 e

ıΘ/f
hinein, der zweite Teil proportional g ist eine schlangenförmige Abwärts-
bewegung mit der asymptotisch konstanten Geschwindigkeitsrichtung
−ı g/f . Der erste Teil proportional v0 entspricht einer Bewegung längst
einer logarithmischen Spirale. Um dies einzusehen, betrachten wir die
Bewegung relativ zum Pol. Es gilt bei g = 0 für diese Relativbewegung

δ z = −v0

f eı Θ−f t.

Diese Relativbewegung stellt eine logarithmische Spirale mit dem Stei-
gungswinkel tan[φ] = fD/fL dar. Mit der idealisierten Lösung (4.251)
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Fig. 4.35: Die möglichen Flugbahnen eines Balles mit linearem Widerstands
- und Auftriebsgesetz, berechnet mit (4.251). Die Parameter sind hier v0 =
60m/s, Θ = 12◦, f = 0.1(1 − ı j), wobei j von 1 bis 6 genommen wurde.

lassen sich so schon wichtige Eigenschaften von ballistischen Flugbahnen
eines Balles mit einem backspin (ℑ[f ] < 0) studieren und verstehen.

Für die Beschreibung der Flugbahn eines Fußballes reichen diese Glei-
chungen aus, nicht aber für die wesentlich schnelleren Golfbälle mit
backspin. Hier müssen wir zumindest für den direkten Luftwiderstand ein
quadratisches Widerstandsgesetz ansetzen. Historisch ist interessant, dass
der Schottische Physiker und begeisterte Golfspieler P.G. Tait (1831-
1901) diesen Ansatz gemacht hat ([56],[57]). Für den Luftwiderstand
setze er nach Rücksprache mit dem irischen Mathematiker und Physiker
G.G.Stokes (1819-1903) ein mit der Geschwindigkeit quadratisches,
für den Auftrieb durch den backspin wieder ein mit der Geschwindigkeit
lineares Gesetz (Magnus Effekt) an. Wir wollen dieser Annahme hier fol-
gen und setzen als fundamentale Bewegungsgleichung für den rotierenden
Golfball mit backspin

..
x = −k v .

x− f
.
y, (4.252)

..
y = −k v .

y + f
.
x− g (4.253)

an, indem v2 = .
x2 + .

y2 ist, k und f eine reziproke Länge für den Luftwi-
derstand sowie eine der Rotationsfrequenz ω des Golfballes proportionale
Frequenzkonstante darstellen. Die eigentlichen Details eines Golfballes
soll hier nicht weiter erörtert werden. Zu erwähnen wäre nur, dass die heu-
tigen Bälle an ihrer Oberfläche etwa 300-450 sehr kleine Einbuchtungen
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(sogenannte dimples) aufweisen, welche den Luftwiderstand gegenüber
einer glatten Kugel deutlich verringern. Dies wurde schon 1897 in einem
Patent festgelegt.

Mit z = x + ı y lassen sich nun die beiden gekoppelten Gleichungen
wieder als

(4.254)..z + (k |.z|−ı f) .z + ı g = 0

schreiben. Eine geschlossene analytische Integration ist aber jetzt nicht
mehr möglich. Man kann diese Gleichung aber als Grundlage für eine
numerische Integration benutzen. Multipliziert man wieder die erste
Gleichung mit .

x, die zweite mit .
y und addiert beide, so folgt die erste

Grundgleichung
v

.
v + k v3 + g

.
y = 0. (4.255)

Berücksichtigen wir wieder die elementaren Beziehungen
.
x = v cos[θ]; .

y = v sin[θ]; dx = cos[θ] ds; dy = sin[θ] ds, (4.256)

so gilt analog wie in der klassischen Ballistik

(4.257).
v + k v2 + g sin[θ] = 0.

oder mit (4.256)

(4.258)v
dv

ds
+ k v2 + g sin[θ] = 0.

Da die Auftriebskraft in unserem Modell immer senkrecht zur Flug-
richtung wirkt, ist das Ergebnis für die Geschwindigkeitsveränderung
verständlich.

Wird weiterhin die erste Gleichung von (4.252) mit .
y, die zweite mit.

x multipliziert und dann die zweite von der ersten subtrahiert, so gilt
zunächst ..

x
.
y − ..

y
.
x = −f v2 + g

.
x (4.259)

und wegen (4.256) schließlich

(4.260)v
dθ

dt
= f v − g cos[θ].
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Die beiden Gleichungen (4.258) und (4.260) sind unsere Modellgleichun-
gen für die ballistische Kurve eines Golfballes mit backspin. Beide
Gleichungen lassen sich wiederum einfach interpretieren. Die Gleichung
(4.258) beschreibt die Kräftebilanz in tangentialer Richtung der Bahn-
kurve, die Gleichung (4.260) normal zur Kurve. Mit der Bogenlänge s
und (4.256) gilt somit die wichtige Relation

(4.261)v2 dθ

ds
= f v − g cos[θ],

wobei ds/dθ bis auf das Vorzeichen den Krümmungsradius der Bahnkurve
bezeichnet.

Wir wollen jetzt wieder eine einzige Differentialgleichung für v[θ] ablei-
ten. Dazu schreiben wir (4.257) nach der Kettenregel

(4.262)dv

dθ

dθ

dt
+ k v2 + g sin[θ] = 0.

Eliminieren wir hier die Größe dθ/dt mit Hilfe von (4.260), so erhalten
wir die fundamentale Gleichung

(4.263)1
v

dv

dθ
= g sin[θ] + k v2

g cos[θ] − f v
.

Diese Differentialgleichung beschreibt die Geschwindigkeit v eines rotie-
renden Golfballes mit backspin als Funktion des Steigungswinkel θ seiner
Flugbahn.

Eine exakte Integration der Gleichung (4.263) scheint nicht möglich
und auch nicht sinnvoll zu sein. Ähnlich wie P.G.Tait im Jahre 1891
können wir zunächst den Spezialfall g ≡ 0 betrachten. In diesem Fall
reduziert sich die Gleichung (4.263) auf

1
v2

dv

dθ
= −k

f
.

Eine Integration liefert zunächst

1
v

= k

f
θ + C.
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Völlig unabhängig von der Integrationskonstanten C sieht man hier, dass
für einen bestimmten Winkel θ die Geschwindigkeit v unendlich wird.
Ohne Einschränkung der Allgemeinheit können wir hier C = 0 setzen
und so den singulären Punkt nach θ = 0 legen. Als Lösung erhalten wir
so

(4.264)v[θ] = f/k

θ
.

Die Orientierung des Koordinatensystems wurde jetzt so festgelegt, dass
für θ = 0 die Geschwindigkeit unendlich ist. f > 0 (Auftrieb) gilt jetzt
θ > 0, für f < 0 (Abtrieb) gilt entsprechend θ < 0. Setzen wir diese
Lösung in (4.261) mit g ≡ 0 ein, so folgt die bemerkenswerte Relation

(4.265)ds = 1
k

dθ

θ
.

wobei nun die Größe fL herausgefallen ist. Die eigentliche Differenti-
algleichung der spiralförmigen Bahn im Falle g ≡ 0 lautet mit (4.256)
also

(4.266)dx = 1
k

cos[θ]
θ

dθ, dy = 1
k

sin[θ]
θ

dθ.

Dies war auch das Resultat von P.G. Tait Ende des 19ten Jahrhunderts.
Eine Quadratur ergibt zunächst die Darstellung

(4.267)x[θ] = 1
k

∫ θ

0+

cos[ξ]
ξ

dξ, y[θ] = 1
k

∫ θ

0

sin[ξ]
ξ

dξ.

Das Integral für x divergiert aber in Richtung der Asymptoten für ξ → 0
und x → −∞. Wir verschieben das Koordinatensystem in der x-Richtung
aus dem Unendlichen in den Pol , indem wir schreiben

(4.268)x[θ] = − 1
k

∫ ∞

θ

cos[ξ]
ξ

dξ, y[θ] = 1
k

∫ θ

0

sin[ξ]
ξ

dξ.

Mit dem Integralsinus und Integralcosinus erhalten wir so für die Spiral-
bahn endgültig

(4.269)x[θ] = 1
k

Ci[θ], y[θ] = 1
k

Si[θ].

Die Spirale hat universellen Charakter, denn weder der Auftriebspara-
meter f noch die Anfangsgeschwindigkeit v0 spielt für die Gestalt der
Kurve eine Rolle.
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Fig. 4.36: Der schottische Physiker und Philosoph P.G. Tait (1831-1901)
hat sich gegen Ende des 19ten Jahrhunderts intensiv mit der Flugbahn von
Golfbällen mit backspin (Magnus-Effekt) beschäftigt. Auch Flugbahnen mit
einer Schleife (looping) hat er numerisch untersucht, die aber theoretisch nur
bei extrem schnellen Rückwärts-Rotationen des Golfballes auftreten würden.
Neben der Spiralbahn im Falle g=0 zeigt Fig.4 auch eine Schleifenbahn, die
Tait aber nur graphisch abgeschätzt („geraten“) hat.

Wir wollen am Schluss für flache Flugbahnen eines Golfballes eine genä-
herte analytische Darstellung dieser Bahnkurven ableiten. Aus (4.258) und
(4.261) lässt sich die Erdbeschleunigung g eliminieren. Durch Einführung
von u = v cos[θ] erhält man so die Differentialgleichung

(4.270)du

ds
+ k u+ f sin[θ] = 0.

Die Gleichung (4.261) nimmt schließlich die Form

(4.271)dθ

ds
= −g cos[θ]3

u2 + f cos[θ]
u

an. Aus beiden so modifizierten Gleichungen kann man eine erste Nähe-
rung für die Bahnkurve in cartesischen Koordinaten gewinnen. Genauer
ist es aber, parallel dazu auch eine Taylor-Entwicklung der Bahnkurve
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Fig. 4.37: Die Spiralbahn eines rotierenden Golfballes im Falle g = 0, in der
Literatur auch Nielsen’s Spirale (sici spiral) genannt.

zu berechnen, um die Parameter der erste Näherung aus der Störungs-
rechnung zu verbessern. Mit der Abkürzung

(4.272)G[ξ] = eξ − ξ − 1

erhält man so für die Bahn eines Golfballes mit back spin die Näherung

(4.273)y ≈ tan[Θ]x+ f sec[Θ]
k2 v0

G[k sec[Θ]x] − g

4 k2 v2
0

G[2 k sec[Θ]x].

Die Näherung von P.G.Tait sieht genauso aus, nur ist bei Ihm sec[Θ] ∼ 1
und tan[Θ] ∼ Θ. Der Abgangswinkel Θ wird im Golf als Loft bezeichnet.
Ein Vergleich mit numerischen Integrationen zeigt, dass bis knapp über
die blow up Grenze, bei der beim Abschlag Auftrieb und Gravitation
ausgeglichen sind, die analytische Darstellung der Bahnkurve eine gute
Approximation darstellt.
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Fig. 4.38: Die Flugbahnen eines Golfballes , berechnet mit einer numerischen
Integration von (4.252,4.253). Die Parameter sind hier v0 = 80m/s, Θ =
10◦, k = 0.01 m−1, f = 0.2 ∗ j, wobei j von 1 bis 5 genommen wurde.

4.17 Einfluss der Erdrotation
Der britische Mathematiker J.E. Littlewood (1885-1977) berichtet
in seinem Buch A Mathematician’s Miscellany aus dem Jahre 1953 von
einer Begebenheit während des Seegefechtes am 8. Dezember 1914 vor
den Falklandinseln zwischen mehreren britischen Schlachtschiffen und
zwei deutschen Panzerkreuzern der Ostasienflotte , die ihm ein britischer
Offizier als unmittelbar Beteiligter mitteilte. Die britischen Schiffe began-
nen auf große Distanzen zu feuern, verfehlten aber ständig ein deutsches
Schiff zunächst immer um etwa 100 Yards20 linksseitig. Man hatte zwar
beim Zielen auf große Entfernungen stillschweigend auch die Drift durch
die Erdrotation durch einen Linksvorhalt berücksichtigt, aber vergessen,
dass man sich auf der Südhalbkugel bei etwa φ ∼ −52◦ befindet, wo
keine Rechtsablenkung, sondern eine Linksablenkung auftritt. Aufgrund
des falschen Linksvorhalts verdoppelte sich so der Fehler.

Das so geschilderte Geschehen wirft die Frage nach dem Einfluss der
Erdrotation auf die Bahn einer Kanonenkugel auf. Nach Figur (4.39)
betrachten wir auf der Erdoberfläche ein Koordinatensystem, bei dem die
201 yd = 0.9144 m
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Fig. 4.39: Das lokale Koordinatensystem auf der Nordhalbkugel der rotieren-
den Erde mit dem axialen Winkelgeschwindigkeitsvektor Ω. Der Vektor zeigt
auf den Nordpol (Polarstern) des Himmels. Der Neigungswinkel φ entspricht
der geographischen Breite des Ortes. Auf der Nordhalbkugel (φ > 0) wird eine
Wurfparabel nach rechts, auf der Südhalbkugel (φ < 0) nach links abgelenkt.

+x Achse nach Osten, die +y Achse nach Norden und die +z Achse in den
Zenit zeigt. Dann gelten die schon von C.F. Gauss 1802 aufgestellten
Bewegungsgleichungen (hier ohne Luftwiderstand)

..
x− 2 Ω sin[φ] .

y + 2 Ω cos[φ] .
z = 0,

..
y + 2 Ω sin[φ] .

x = 0, (4.274)
..
z − 2 Ω cos[φ] .

x = −g.

Die Größe Ω = 7.292 · 10−5 s−1 bedeutet die Winkelgeschwindigkeit
der Erdrotation und φ die geographische Breite. Um die Gleichungen in
zweckmäßiger Approximation zu lösen, führen wir für den Erdboden die
komplexe Koordinate

ζ = x+ ı y
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ein. Die obigen Gleichungen reduzieren sich dann auf das System
..
ζ + 2 ıΩ sin[φ]

.
ζ + 2 Ω cos[φ] .

z = 0,
..
z − 2 Ω cos[φ] .

x+ g = 0.

Dieses gekoppelte System kann man einfach durch eine Reihenentwicklung
bis zur dritten Ordnung in der Zeit t mit den Anfangswerten x[0] = y[0] =
z[0] = 0 sowie

.
ζ[0] = v0 cos[Θ] eı α; .

z[0] = v0 sin[Θ].

lösen, wobei α der Azimuthwinkel ist, der von Osten über Norden gezählt
wird. Man erhält

ζ[t] = eı α v0 cos[Θ] t−
ı eı α v0 Ω cos[Θ] sin[φ] t2 −
v0 Ω sin[Θ] cos[φ] t2 +
1
3 Ω g cos[φ] t3 + . . .

Der erste Term beschreibt die Spur der ungestörten Wurfparabel längs
des Erdbodens in der Richtung α, der zweite Term eine dazu orthogonale
Abweichung, die auf der Nordhalbkugel nach rechts, auf der Südhalbku-
gel aber nach links gerichtet ist. Der dritte Term beschreibt eine reine
Westablenkung, während der vierte Term eine Ostablenkung anzeigt, wie
sie auch bei einem freien Fall in einen tiefen Schacht auftritt. Auch die
Flugzeit wird leicht modifiziert, wie man an der Lösung für die vertikale
z Koordinate

z[t] = v0 sin[Θ] t+
(
v0 Ω cos[α] cos[Θ] cos[φ] − 1

2 g
)
t2 + . . .

sehen kann. Für die geänderte Flugzeit ergibt sich so

T = 2 v0

g
sin[Θ] + 2 v

2
0
g2 Ω cos[α] sin[2Θ] cos[φ] + . . .

Mit der Wurfweite W nach der Flugzeit T und der Gipfelhöhe H der
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Bahn lässt sich das obige Ergebnis vereinfachen zu

ζ[T ] = eı α

(
1 +

√
2 Ω cos[φ]

√
W

g
cot[Θ] cos[α]

)
W −

2 ı eı α Ω

√
2H
g

sin[φ]W −

8
3 ΩH

√
2H
g

cos[φ].

Während der letzte Term eine feste Westablenkung anzeigt, beschreibt
der erste Term eine Erhöhung oder Erniedrigung der Schussweite und
der zweite Term die rechts - links Abweichung vom Azimut, je nach
Erdhalbkugel. Mit den Werten W = 10000 m, H = 5000 m, g =
9.81m/s2, Θ = 45◦ und φ = ±52◦ erhalten wir

8
3 ΩH

√
2H
g

cos[φ] ∼ 19m

√
2 ΩW cos[φ]

√
W

g
cot[Θ] cos[α] ∼ 20 cos[α] m

2 ΩW

√
2H
g

sin[φ] ∼ 37m.

Mit diesem Ergebnis wird die Schilderung von Littlewood verständ-
lich, warum beim Verwechseln der geographischen Breite und daraus
resultierenden falschem Vorhalt ein Fehler von etwa 90 Meter auftreten
kann.
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5 Hypersonische Ballistik

5.1 Die erweiterten Grundgleichungen
Tritt ein Meteor oder Bolide in die Erdatmosphäre ein, hat er mindestens
die lokale Entweichgeschwindigkeit an der Erdoberfläche, gegeben durch√

2 g R, wo R den Erdradius und g die Erdbeschleunigung bezeichnen.
Auch in der Phase der bemannten Mondlandungen von 1968 - 1972 hatten
zum erstenmal in der Geschichte der Astronautik die zurückkehrenden
Apollo - Kapseln Geschwindigkeiten in dieser Größenordnung. In der
Zeitepoche von L. Euler und J.H. Lambert wären diese Probleme
reine Fiktion gewesen - ganz wie der Ritt von Münchhausen auf der
Kanonenkugel. Ein besonderes ballistisches Problem stellt somit die Ab-
bremsung dieser Flugkörper dar, die sich in einer Parabelbahn einem
Planeten (Erde) nähern und schließlich in die oberen Atmosphärenschich-
ten eindringen. Die ursprünglichen Bewegungsgleichungen (4.1) und (4.2)

x

R

R

y

Fig. 5.1: Um auch Flugbahnen bei höheren Geschwindigkeiten zu beschreiben,
muss man als nächstes die Erdkrümmung und die Zentrifugalbeschleunigung
berücksichtigen. Die x − y - Koordinaten werden hier zu „lokalen Polarkoordi-
naten“. Die Größe ẋ übernimmt dabei die Rolle einer Winkelgeschwindigkeit;
multipliziert mit dem Erdradius R ist diese eine Geschwindigkeit über Grund.
(Planetenboden y = 0) .
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müssen jetzt für den Fall abnehmender Luftdichte und aufgrund sehr
hoher Geschwindigkeiten in einem zentralsymmetrischen Gravitationsfeld
erweitert werden. Die Position des Flugkörpers beschreiben wir durch
die globalen Koordinaten X,Y . Die Bewegungsgleichungen in den zwei
Vektorkomponenten lauten dann

..
X = −GM X

r3 − k exp[(R− r)/Hs] v
.
X, (5.1)

..
Y = −GM Y

r3 − k exp[(R− r)/Hs] v
.
Y. (5.2)

Dabei gilt
(5.3)r =

√
X2 + Y 2; v =

√ .
X2 +

.
Y 2.

Durch zeitlich Differentiation folgt weiterhin

(5.4)r
.
r = X

.
X + Y

.
Y ; v

.
v =

.
X

..
X +

.
Y

..
Y.

Wir führen Polarkoordinaten

(5.5)X = r cos[φ]; Y = r sin[φ]; v =
√.
r2 + r2 .

φ2

ein. Einsetzen in die obigen Gleichungen führt für zu dem System

..
r = −GM

r2 − k exp[(R− r)/Hs] v .
r, (5.6)

r
..
φ = −2 .

r
.
φ− k exp[(R− r)/Hs] v r .

φ. (5.7)

Daraus leiten wir mit (5.4) und dem System (5.6,5.7) für die Geschwin-
digkeitsänderungen die Gleichung

(5.8)v
.
v = −GM

.
r

r2 − k exp[(R− r)/Hs] v3

ab. Andererseits gilt für den Neigungswinkel θ zur lokalen Horizontalen

(5.9)sin[θ] =
.
r

v
.

Wird dieser Ausdruck nach der Zeit differenziert, so erhält man (5.6,5.7)

(5.10)v2 .
θ = −

(
GM

r2 − v2

r

)
r

.
φ.
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Führen wir jetzt die lokale Koordinaten in der Nähe des Erdbodens

(5.11)r = R+ y; .
y = .

r; .
x = r

.
φ

ein, wo R den Erdradius bezeichnet, so lauten die gekoppelten Bewe-
gungsgleichungen

(5.12)v
.
v = −k exp[−y/HS ] v3 −GM

.
y

(R+ y)2 .

und
(5.13)v2 .

θ = −
(

GM

(R+ y)2 − v2

R+ y

)
.
x.

Dies sind die globalen Verallgemeinerungen der lokalen Gleichungen (4.4)
und (4.9). Die Erweiterung besteht einerseits in der Berücksichtigung der
Abnahme von Luftdichte und Gravitation mit der Höhe und andererseits
einem Zentrifugalterm. Hier ist bemerkenswert, dass dort v2 anstatt .

x2

steht. In den meisten Fällen wird die Höhenabhängigkeit der Gravitation
im Erdnahen Bereich vernachlässigt. Also gilt mit

g = GM

R2 ; .
x = v cos[θ]; .

y = v sin[θ]

(5.14).
v = −k exp[−y/Hs] v2 − g sin[θ].

und

(5.15)v
.
θ = −

(
g − v2

R

)
cos[θ].

Wegen (5.11) können wir alternativ die Bewegungsgleichungen (5.6) und
(5.7) auch

..
x = −k e− y

Hs v
.
x−

.
x

.
y

R
, (5.16)

..
y = −k e− y

Hs v
.
y +

.
x2

R
− g. (5.17)
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schreiben. Bemerkenswert ist hier, dass der Term .
x

.
y/R ohne den Faktor

2 auftritt. Man kann aber auch zusätzlich zum Luftwiderstand eine
Auftriebskraft bei einem supersonischen Gleitkörper berücksichtigen. Die
Modellgleichungen lauten dann

..
x = −kD e− y

Hs v
.
x− kL e

− y
Hs v

.
y −

.
x

.
y

R
, (5.18)

..
y = −kD e− y

Hs v
.
y + kL e

− y
Hs v

.
x+

.
x2

R
− g. (5.19)

Hier sind kD (drag force) und kL (lift force) als konstant angenommene
charakteristische inverse Längen für die aerodynamischen Kräfte. kL >
0 bedeutet Auftrieb, kL < 0 bedeutet Abtrieb des Gleitkörpers. Bei
Gleitkörpern kann das Verhältnis kL/kD durchaus Werte um 1 oder
darüber erreichen.

Wenn diese Gleichungen für eine globale Analyse nicht ausreichen,
müssen wir wieder zu den allgemeinen Bewegungsgleichungen (5.1) und
(5.2) zurückkehren. Wir führen die dimensionslose Zeit

(5.20)τ =
√
g

R
t, g = GM

R2

ein und setzen für die Position und die aerodynamischen Koeffizienten
die dimensionslosen komplexen Zahlen

(5.21)p = (X + ı Y )/R, κ = (kD − ı kL)R, γ = R

HS

an, so lautet die Bewegungsgleichung in der dimensionslosen komplexen
Koordinate p (Striche bedeuten Ableitungen nach τ)

(5.22)p′′ + κ exp [γ (1 − |p|)] |p′| p′ + p
|p|3

= 0

Die einzigen Parameter, welche die Struktur des Gleitfluges eines hy-
personischen Körpers bestimmen, sind demnach die komplexe Zahl κ
und die reelle Größe γ. Durch numerische Integrationen lassen sich mit
dieser einfachen Gleichung sehr schnell antriebslose Gleitbahnen bei un-
terschiedlichen Parameterwerten untersuchen. In Fig. (5.2) ist eine solche
semiballistische Rikoschett-Flugbahn (von franz. ricocher, „abprallen“)
in der oberen Stratosphäre dargestellt.
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Fig. 5.2: Die rikoschettierende Gleitbahn eines hypersonischen Flugkörpers in
der oberen Atmosphäre. Der hier komplexwertige aerodynamische Koeffizient κ
ist 0.2−0.4ı, der Parameter γ ∼ 800. Erste Berechnungen solcher Flugbahnen
hat der österreichische Raumfahrtingenieur E. Sänger (1905-1964) mit
seiner Assistentin I. Bredt-Sänger (1911-1983) im Rahmen des geheimen
Projektes „Silbervogel“ von 1938-1944 durchgeführt. In den USA durch die
Space Shuttles, in der UDSSR durch die analogen Raumgleiter „Buran“
realisiert, wobei ein kleinerer Prototyp auch als das „Vögelchen“ bezeichnet
wurde.

5.2 Das Allen - Eggers Modell
Zu Beginn der 1950er Jahre entstand in der Raketenballistik das Problem,
wie Flugkörper aus dem All unbeschadet wieder zur Erde zurückkehren
können, ohne das sie durch die Reibungshitze beim Wiedereintritt in die
Erdatmosphäre zerstört werden, wie es fast jedem Riesenboliden (Meteo-
riten) beim Eindringen in die Atmosphäre passiert (Teil des geheimen
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Fig. 5.3: Künstlerische Darstellung von Apollo 8 beim Wiedereintritt in die
Erdatmosphäre am 27. Dezember 1968. Die Abbremsung und die Flugbahn
einer solchen Raumkapsel („Blunt Body“) stellt ein besonderes ballistisches
Problem dar, welches ganz im Geiste von L. Euler oder J.H. Lambert einer
näheren analytischen Betrachtung bedarf. (Bild: NASA image S68-55292)

ICBM - Programmes). Eine fundamentale theoretische Arbeit zu diesem
Problem wurde von H.J. Allen und A.J. Eggers 1953 veröffentlicht
([1])1. Allen und Eggers gingen wahrscheinlich 1953 von vereinfachten
Gleichungen aus. Sie vernachlässigten sämtliche Scheinkräfte, in dem sie
den Erdradius R → ∞ setzen. Auch die Erdbeschleunigung g wird Null
gesetzt, da sie gegen die aerodynamischen Kräfte zunächst vernachlässigt
werden darf. Die Flugbahn relativ zum geraden Erdboden wird dann
ohne Auftriebskräfte eine Gerade sein. Die beiden Grundgleichung lauten
dann

..
x = −k exp[−y/HS ] v .

x,
..
y = −k exp[−y/HS ] v .

y

Die Referenzhöhe y = 0 soll hier der Erdboden sein. In jedem Fall bezieht
sich dann k ≡ kD (drag-force) auf diese Referenzhöhe. Multipliziert man

1Harry Julian (Harvey) Allen (1910 - 1977), Luftfahrtingenieur und Direktor des
Nasa Ames Research Center von 1965-1969. Bekannt für seine „blunt-body theory“
aus dem Jahre 1953, die aber erst 1957 veröffentlicht werden durfte. Die Theorie
war grundlegend für das Design der Mercury -, Gemini - und Apollo - Kapseln.
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die erste Gleichung mit .
x, die zweite mit .

y und addiert beide, so erhält
man wegen .

x
..
x+ .

y
..
y = v

.
v

dv

dt
+ k e−y/HS v2 = 0. (5.23)

oder nach der Kettenregel

dv

dy

dy

dt
+ k e−y/HS v2 = 0. (5.24)

Da aufgrund der Kraftverhältnisse klar ist, daß in diesem Modell die
Bahn eine Gerade darstellt, substituieren wir in (5.24)

dy

dt
= −v sin[Θ]. (5.25)

Θ bezeichnet hier den als positiv definierten konstanten Neigungswinkel
der „Wiedereinstiegsbahn“ in die Planetenatmosphäre. Setzt man dies in
die Gleichung (5.24) ein, so erhält man

(5.26)sin[Θ] dv
dy

= k e−y/HS v.

Eine ähnliche Gleichung haben auch Allen - Eggers 1953 betrachtet.
Wir definieren jetzt als Referenzhöhe y = 0 die Erdoberfläche. In der
Höhe y → +∞ soll die Geschwindigkeit des einfallenden Körpers v0 sein.
Der Parameter k bezieht sich nun auf seinen Wert am Erdboden. Es
liegt jetzt der Gedanke nahe, anstatt y eine neue unabhängige variable η
gemäß

(5.27)η = e−y/HS ; dη

η
= − dy

HS

einzuführen. Am Erdboden y = 0 ist dann η = 1 und im luftleeren
Weltraum y → ∞ wird η = 0. Die Gleichung (5.26) vereinfacht sich dann
zu

(5.28)dv

dη
= − kHS

sin[Θ] v; d

dη
ln v = − kHS

sin[Θ] .
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Mit diesen Prämissen lautet die Lösung der obigen Gleichung

(5.29)v = v0 exp
[
− kHS

sin[Θ] η
]

Für den Betrag der Bremsbeschleunigung erhält man so

a = k v2
0 exp

[
−2 kHS

sin[Θ] e
−y/HS − y/HS

]
. (5.30)

Diese Größe wird beim Eintauchen des Körpers in die Atmosphäre maxi-
mal bei der Höhe

(5.31)ya = HS ln
[

2 kHS

sin[Θ]

]

Bei dieser Höhe maximaler Bremsung beträgt die reduzierte Geschwin-
digkeit des Körpers im Falle kHS ≪ 1

va = v0 e
−1/2 ≈ 0.61 v0 (5.32)

Der Maximalwert der Bremsbeschleunigung beträgt dabei

(5.33)amax = v2
0 sin[Θ]
2 eHS

.

Dies ist ein überraschendes Resultat des Allen-Eggers Modells: Der Wert
der maximalen Bremsbeschleunigung ist unabhängig vom ballistischen
Parameter k. Dies ist äußerst bemerkenswert. Taucht zum Beispiel ein
Körper mit der lokalen Entweichgeschwindigkeit

√
2 g R (R = Erdradius)

in die oberen Atmosphärenschichten ein, so kann man die maximale
Bremsbeschleunigung mit der Formel

amax = g
R

eHS
sin[Θ] ≈ 300 g sin[Θ] (5.34)

abschätzen. Bei einem Winkel von 5◦ ergibt sich hier eine maximale
Bremsung von 26 g - zu viel für einen menschlichen Körper.

Die Ursache der Invarianz von amax (5.33) bezüglich k beruht auf der
speziellen Struktur der Funktion (5.30). Man kann dies in einem noch
allgemeineren Satz zusammenfassen:
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Satz: Die spezielle Funktionsklasse

f [z] = k exp [−(k a)n exp[−n z/b] − z/b]

mit den positiven reellen Zahlen a, b, k und n hat als Funktion von z im
reellen Intervall 0 < z < ∞ an der Stelle

zm = b ln
[

n
√
nk a

]
ein Extremum

(5.35)f [zm] = 1
n
√
n e a

.

Der Wert dieses Maximums ist eine Invariante bezüglich der Parameter
k und b, hängt also von diesen beiden nicht ab. Die Größe e bezeichnet
hierbei die Eulersche Zahl.

Das obige Modell kann jetzt erweitert werden, indem wir zunächst eine
Auftriebskraft in die Dynamik einfügen. Die erweiterten Gleichungen des
Allen-Eggers Modells lauten dann

..
x = − exp[−y/HS ] (kD

.
x+ kL

.
y) v,

..
y = − exp[−y/HS ] (kD

.
y − kL

.
x) v.

Die Parameter kD ≡ k und kL beschreiben die Wirkung der Bremskraft
(drag force) und der Auftriebskraft (lift force bei kL > 0). Wird wieder
einerseits die erste mit .

x, die zweite mit .
y, andererseits die erste mit.

y , die zweite mit .
x multipliziert und einmal addiert, das andere Mal

subtrahiert, so ergeben sich die beiden äquivalenten Polargleichungen

dv

dt
= −kD exp[−y/HS ] v2,

dθ

dt
= +kL exp[−y/HS ] v.

Der Winkel θ (nicht Θ) wird hier wie gewöhnlich negativ angenommen,
wenn der Körper in die Atmosphäre flach eindringt. Wir führen hier
wieder die Variable η gemäß (5.27) ein und transformieren die obigen
beiden Gleichungen in

d

dη
{ln[v]} = kD HS

sin[θ] ,
d

dη
{cos[θ]} = kL HS . (5.36)
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Die zweite dieser Differentialgleichungen ist sofort integrabel. Wir erhalten
mit der Anfangsbedingung bei η = 0

(5.37)cos[θ] = cos[Θ] + kL HS η.

Taucht also der Körper mit dem Winkel Θ in die Atmosphäre ein, so wird
sein Winkel θ immer flacher, bis er bei einem kritischen η zum erstenmal
für kurze Zeit horizontal fliegt. Danach wird er wieder aufsteigen und
aufgrund dünner werdender Luft und fehlender Gravitation wieder im
Weltraum mit einer asymptotischen Grenzgeschwindigkeit v∞ < v0 ver-
schwinden. Der ganze Vorgang gleicht so einem inelastischen Abprall.
Um dieses genauer zu verstehen, setzen wir die Lösung (5.37) in die erste
der Gleichungen (5.1) ein. Wir erhalten zunächst

(5.38)d

dη
{ln[v]} = ± kD HS√

1 − (cos[Θ] + kL HS η)2
.

Da eine Wurzel auftritt, bleibt zunächst unklar, auf welchem Funkti-
onszweig man sich befindet, da sin[θ] beim Abprall von den dichteren
Atmosphärenschichten sein Vorzeichen wechselt. Es liegt hier der Gedanke
nahe, anstatt v → v[η] die Umkehrfunktion η → η[v] zu betrachten. Zu
diesem Zweck führen wir die Variable

(5.39)ζ = ln
[v0

v

]
; v = v0 e

−ζ

ein, da eine multiplikative Umeichung von v nach (5.36) immer möglich
ist. Die quadrierte Form der Gleichung (5.38) läßt sich dann

(5.40)1 − (cos[Θ] + kL HS η)2 = (kD HS)2
(
dη

dζ

)2

Eine Differentiation nach ζ führt schließlich auf die scheinbare Wellen-
gleichung

(5.41)k2
D H2

S

d2η

dζ2 + k2
L H

2
Sη + kL HS cos[Θ] = 0

Diese fundamentale Gleichung muss mit den Anfangsbedingungen (Θ > 0)

η[0] = 0; η′[0] = sin[Θ]
kD HS
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Fig. 5.4: Eintritt eines Flugkörpers mit Auftrieb (kL = 0.1/km; kD =0.3/km)
in eine idealisierte Atmosphäre ohne Gravitation, in der die Dichte mit der
Eindringtiefe exponentiell zunimmt. Die Flugdaten sind Θ = 45◦, v0 = 8km/s,
v∞ = 0.072km/s und die minimale Höhe Hmin = 8.0 km. Der dynamische
Vorgang gleicht einer inelastischen Reflexion mit identischem Eintritts - und
Austrittswinkel.

gelöst werden. Man erhält

(5.42)η = 1
kL HS

(
cos
[
kL

kD
ζ − Θ

]
− cos[Θ]

)
.

Entwickeln wir (5.42) nach Potenzen von ζ, so erhält man

(5.43)η = sin[Θ]
kD HS

ζ − kL cos[Θ]
2 k2

D HS
ζ2 − k2

L sin[Θ]
6 k3

D HS
ζ3 + . . .

Der erste Term ist identisch mit den Definitionen (5.27) , (5.39) und
(5.29) des direkten ballistischen Eintauchens ohne Auftriebskräfte.

Da ζ ≡ ln[v0/v] > 0 ist, wird η genau dann null, wenn ζ = 0 oder
ζ = 2 Θ kD/kL ist. Aus dieser Bedingung folgt für die asymptotische
Entweichgeschwindigkeit nach dem Abprall

(5.44)v∞ = v0 exp
[
−2 kD

kL
Θ
]
.
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Den tiefsten Punkt in der Atmosphäre erreicht der Körper, wenn η[ζ]
maximal wird. Mit (5.42) und (5.27) ergibt sich so

(5.45)ζmin = kD

kL
Θ; Hmin = HS ln

[
kL HS

1 − cos[Θ]

]
.

Die Geschwindigkeit in der minimalen Höhe Hmin beträgt zudem

(5.46)vHmin
= v0 exp

[
−kD

kL
Θ
]
.

Bemerkenswert ist hier, dass mit Auftrieb die Eindringtiefe Hminnicht
von der Anfangsgeschwindigkeit v0 abhängig ist.

Wir können jetzt im Rahmen dieses idealisierten aerodynamischen
Modelles ohne Gravitation eine Abschätzung über die Abbremsung von
der zweiten kosmischen Geschwindigkeit v0 =

√
2 g R auf etwa die erste

kosmische Geschwindigkeit
√
g R (Kreisbahngeschwindigkeit) machen.

Der Beschleunigungsverlauf als von Funktion von ζ lautet wegen a =
kD v2

0 η explizit
(5.47)a = 2 g kD Rη[ζ] e−2 ζ .

Maximal wird dieser Ausdruck kurz vor dem Durchlaufen des minimalen
Bahnpunktes. Mit (5.45) folgt dann genähert

(5.48)amax ∼ g
R

HS

kD

kL
Θ2 e−2 kD/kL Θ.

Die maximale Bremsbeschleunigung hängt im Modell ohne Gravitation
entscheidend vom Verhältnis kD/kL und natürlich vom Eintrittswinkel
ab. Bei den Apollo-Missionen galt Θ ∼ 6.5◦. Mit kD/kL = 3 und
R/HS ∼ 800 folgt die Abschätzung

amax ≈ 15 g. (5.49)

Dieser Wert wäre für einen menschlichen Körper noch zu hoch. Bei einem
Winkel von 3.5◦ ergibt sich noch eine maximale Bremsung von etwa 6 g -
genau der Wert der Apollo-Missionen. Wir haben damit gezeigt, dass beim
Eintauchen in die Erdatmosphäre es günstig ist, dass die Raumkapsel
nicht geradewegs in tiefere Schichten eindringt, sondern zunächst wieder
leicht aufsteigt. Später werden wir sehen, dass beo v0 ∼

√
2 g R durch

Berücksichtigung der zentrifugalen Bahnbeschleunigung der Bremswert
auch bei Θ = 6.5◦ auf etwas 6 g gedrückt werden kann.
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5.3 Ballistischer Wiedereintritt (Re-Entry) aus
großen Höhen

Im Kapitel über das idealisierte Allen - Eggers Modells haben wir
schon die dynamischen Verhältnisse beim Wiedereintritt unter Brems -
und Auftriebskräften diskutiert. Die Gravitation wurde dort noch nicht
berücksichtigt. Die damaligen Rechnungen aus dem Jahre 1953 zum ther-
mischen Verhalten haben wesentlich dazu beigetragen, den Raumkapseln
Mercury, Gemini und Apollo in den 1960er Jahren das charakteristische
„blunt-body“ („Stumpfer Körper“) - Aussehen zu geben, damit durch die
Schockwelle die thermische Erhitzung zum Körper auf Abstand bleibt.

In den 1950er Jahren wurden sehr unterschiedliche Konzepten dis-
kutiert, wie eine Raumkapsel aus einer Erdumlaufbahn wieder in die
Erdatmosphäre eintauchen kann (Reentry), ohne zu verglühen. Ne-
ben einem Gleitmechanismus und einem dip und skip Flugbahnmanöver
(„Eintauchen und Überspringen“) war der semi-ballistische Wiedereintritt
das kostengünstigste und sicherste Konzept. Um aber eine realistische
Wiedereinstiegsbahn einer Raumkapsel in eine Planetenatmosphäre zu
berechnen, reichen die vereinfachten Annahmen - besonders die Vernach-
lässigung der Gravitation - des Allen - Eggers Modelles nicht mehr aus.
Die hypersonische Bahn ist bei sehr flachem Einstieg in die Atmosphäre
(|Θ|≈ 5◦) gegenüber der Erdoberfläche auch ohne Auftrieb keine Gerade
mehr, sondern eine sehr flache nach oben geöffnete Parabel. Zwei wichtige
Fragen drängen sich hier auf:([38])2

• Welche Bahnparameter führen zur Landung und nicht zurück in
den Orbit?

• Welche maximalen Bremsbeschleunigungen treten bei einem optimal
günstigen Wiedereintritt auf, wenn man Gravitation, aber keinen
Auftrieb berücksichtigt?

• Wenn der mögliche Eintrittskorridor sehr eng ist, kann eine reine
Bremsbeschleunigung eine sichere Landung garantieren oder muss
zusätzlich eine Auftriebskontrolle zur Verfügung stehen (drag; lift-
off; lift down)

2Einen Überblick gibt das NASA-eBook "‘Coming Home"’
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Fig. 5.5: Die Apollo - Raumkapseln mussten beim Wiedereintauchen in
die Erdatmosphäre mit über 10 km/s Geschwindigkeit einen sehr flachen
Eintauchwinkel einhalten, der in 100 km Höhe nur etwa 5.5 bis 6.5 Grad
Neigung zur Erdoberfläche hatte. (Bildquelle: NASA)

Eine detaillierte Antwort auf diese Fragen läßt sich natürlich durch
numerische Integration der gekoppelten Differentialgleichungen (5.18,
5.19) erreichen. Wir wiederholen die dynamischen Bewegungsgleichungen
(5.18) und (5.19) zunächst ganz allgemein mit Auftrieb in der Form

(5.50)..
x = −kD e− y

Hs v
.
x− kL e

− y
Hs v

.
y −

.
x

.
y

R
,

(5.51)..
y = −kD e− y

Hs v
.
y + kL e

− y
Hs v

.
x+

.
x2

R
− g,

wobei v =
√ .
x2 + .

y2 ist. kD (drag force) und kL (lift force) bezeichnen
wieder die aerodynamischen Koeffizienten am Erdboden im Abstand R
vom Erdmittelpunkt in der Referenzhöhe y = 0, welche hier nicht die
Erdoberfläche bezeichnet. Im Falle kL = 0 spricht man von einem reinen
ballistischen Wiedereintritt.

Im Folgenden wollen wir zunächst versuchen, die Differentialgleichung
(5.41) mit einem in der Nähe der Erdoberfläche wirkenden Gravitati-
onsfeld zu erweitern. Multiplizieren wir die obigen beiden Gleichungen
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abwechselnd mit .
x und .

y und addieren bzw. subtrahieren sie voneinander,
so erhalten wir die Gleichungen (bei Abstieg gilt θ < 0)

(5.52)dv

dt
+ kD e−y/HS v2 + g sin[θ] = 0

und
(5.53)v

dθ

dt
= kL e

−y/HS v2 −
(
g − v2

R

)
cos[θ].

In einem ersten Schritt wollen wir den bei Flachbahnen kleinen gravi-
tativen Term g sin[θ] in (5.52) gegenüber den aerodynamischen Kräften
vernachlässigen. Ansonsten analysieren wir die beiden Gleichungen (5.52)
und (5.53) in ähnlicher Weise wie im Kapitel über das Allen-Eggers
Modell. Mit der neuen unabhängigen Variablen η (5.27) erhalten wir
wegen

d

dt
= v sin[θ] d

dy
= − v

HS
sin[θ] η d

dη

jetzt anstatt (5.36)

d

dη
{ln v} = kD HS

sin[θ] , (5.54)

η

{
sin[θ] dθ

dη
+ kL HS

}
=

(
g HS

v2 − HS

R

)
cos[θ] (5.55)

Im nächsten Schritt machen wir für den sehr flachen ballistischen Wie-
dereintritt die Näherung

(5.56)sin[θ] ∼ θ; cos[θ] ∼ 1.

Außerdem soll der Flugkörper zu Beginn mit der ersten kosmischen
Geschwindigkeit

√
gR sehr flach in die obere Atmosphäre eintauchen.

Also definieren wir den Parameter ζ und setzen mit (5.39)

(5.57)v =
√
gR e−ζ .

Eine solche Parametrisierung ist nur gestattet, wenn während des Fluges
die Geschwindigkeit v im Modell mit wachsendem ζ monoton abnimmt.
Es dürfen also in der ballistischen Kurve nicht zwei unterschiedliche
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Bahnpunkte mit derselben Geschwindigkeit auftreten. Mit alledem gilt
anstatt (5.54),(5.55) jetzt

dζ

dη
= −kD HS

θ
(5.58)

η

{
θ
dθ

dη
+ kL HS

}
= HS

R

(
e2ζ − 1

)
(5.59)

Wir lösen die erste Gleichung (5.58) nach θ auf und erhalten

(5.60)θ
dζ

dη
= −kD HS ; dθ

dζ
= −kD HS

d2η

dζ2 .

Setzen wir diesen Ausdruck in die zweite Gleichung (5.59), die wir auch

η

{
θ
dζ

dη

dθ

dζ
+ kL HS

}
= HS

R

(
e2 ζ − 1

)
schreiben können, ein, so folgt unmittelbar(

kD

√
RHS

)2
η
d2η

dζ2 + kLRη = e2 ζ − 1.

Führen wir noch die Umeichung

(5.61)η[ζ] = Y[ζ]
kD

√
RHS

ein, so folgt für Y → Y[ζ] die bemerkenswerte Differentialgleichung

(5.62)Y d2Y
dζ2 + λY = e2 ζ − 1.

mit der Auftriebs-Kennzahl

(5.63)λ = kL

kD

√
R

HS
.

Eine analoge Gleichung wie (5.62) wurde zum erstenmal von dem russi-
schen Aerodynamiker V.A. Yaroshevsky (1932-2014) im Jahre 1964
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Fig. 5.6: Gedenkplakette für den legendären unbemannten Flug der CCCP-
Raumfähre Buran (Schneesturm) 1.01 vom 15. November 1988. Auch als
Erinnerung an V.A. Yaroshevsky und seine fundamentale Modellgleichung
für den Wiedereintritt eines Satelliten in die Erdatmosphäre. Der Auftrieb-
sparameter ist hier mit η anstatt λ bezeichnet.

veröffentlicht ([65, 66])3. Sie spielte Ende der 1950er Jahre wohl eine
wichtige Rolle, um die erste bemannte Raumkapsel Wostok I im Jahre
1961 mit J. Gagarin (1934-1968) fast ohne Auftrieb (kL = 0) sicher zur
Erde zurückzubringen. Ohne Gravitation und Zentrifugalkraft ist in (5.62)
die rechte Seite der Gleichung Null. Interessant ist dann ein Vergleich
mit der Gleichung (5.41). Entwickelt man deren Lösung (5.42) bis zur
quadratischen Ordnung in ζ, so ist diese Funktion auch Lösung der obigen
Gleichung (5.62). Dies zeigt die schöne Konsistenz dieser fundamentalen
asymptotischen Gleichung.

Um den zurückgelegten Weg x längs der Planetenoberfläche zu berech-
nen, gehen wir wieder zur Gleichung (5.53) ohne den kleinen Gravitati-

3Die Gleichung von Yaroshevsky mit einem Auftriebsterm war auch beim Problem
des unbemannten Raumgleiters „Buran“ beim Wiedereintritt in die Erdatmosphäre
im Jahre 1988 von Relevanz.
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onsterm zurück und schreiben mit der Kettenregel

dv

dx
+ kD η v = 0.

Mit (5.57) erhalten wir schließlich

(5.64)dx = dζ

kD η
≡
√
RHS

dζ

Y[ζ] .

Wenn Y → Y[ζ] aus (5.62) bekannt ist, kann auch die Wegstrecke x nach
dem Eintauchen berechnet werden. Im Falle ζ0 = 0 ist die Stelle ζ = 0
eine Singularität, die im Spezialfall λ = 0 durch entsprechend modifizierte
Anfangsbedingungen umgangen werden muss. Für den Eintauchwinkel θ
erhalten wir mit (5.60) und (5.61)

(5.65)θ = −
√
HS

R

dY
dζ

.

Mit HS = 8 km und R = 6371 km entspricht die Bogenmaß-Größe√
HS/R ∼ 2.03◦ Winkelgrad. Auch die dazu gehörende Flughöhe läßt

sich mit Y ausdrücken. Wegen

(5.66)e−y/HS ≡ η = Y[ζ]
kD

√
RHS

folgt für die Flughöhe

(5.67)Hζ = 1
2 HS ln

[
R

HS

]
−HS ln

[
Y[ζ]
kDHS

]
.

Der erste Höhenterm beträgt mit HS = 8 km und R = 6371 km etwa
26 km. Der Flugkörper erreicht diese Höhe, wenn Y[ζ] = kD HS ist.

Eine allgemeine exakte analytische Lösung - selbst in parametrisierter
Form - scheint es für die Schlüsselgleichung (5.62) nicht zu geben. Wir
spezialisieren zunächst unsere Diskussion von (5.62) auf λ = 0 (kein
Auftrieb). Dann lautet sie zunächst

Y d2Y
dζ2 = e2 ζ − 1.
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Eine Theorie in erster Näherung erhalten wir, indem wir die rechte Seite
dieser Gleichung bis zur ersten Ordnung um die Singularität ζ = 0 durch
die spezielle Emden-Fowler Gleichung

Y d2Y
dζ2 = 2 ζ

approximieren. Als Anfangsbedingungen setzen wir Y[0] = Y′[0] = 0,
da die Raumkapsel aus größer Höhe mit dem Neigungswinkel Θ = 0 in
die tieferen Atmosphärenschichten eintauchen soll. Die beiden möglichen
Anfangsbedingungen Y′[0] = 0 und Y′[0] ̸= 0 bestimmen dabei zwei
unabhängige Lösungen der Fundamentalgleichung (5.62), worauf wir
noch eingehen werden. Durch einen Potenzreihenansatz ergibt sich so die
partikuläre Lösung

(5.68)Y[ζ] = 2
√

2
3 ζ

3/2.

Für den Bremsverlauf kD v2 η[ζ] gilt zunächst allgemein

a = g

√
R

HS
Y[ζ] e−2 ζ .

Maximal wird dieser Ausdruck bei ζm, welches der Gleichung

(5.69)Y′[ζm] = 2 Y[ζm]

genügt. Mit (5.68) gilt so ζm = 3/4. Das führt zu der ersten Approxima-
tion

amax = 3
2

√
2 e3/2

g

√
R

HS
.

Wieder ist die maximale Bremsbeschleunigung unabhängig von dem
Parameter kD. Der numerische Koeffizient vor dem g ergibt sich in dieser
ersten Approximation zu 0.2366... Um diese wichtige Zahl noch genauer
auszurechnen, lösen wir (5.62) durch eine Potenzreihe

(5.70)Y[ζ] = 2
√

2
3 ζ

3/2
(

1 + 1
6 ζ + 1

24 ζ
2 + 47

4752 ζ
3 + . . .

)
.

oder noch besser durch die Darstellung

(5.71)Y[ζ] = 2
√

2
3 ζ

3/2 exp
[
ζ

6 + ζ2

36 + 4 ζ3

891 + . . .

]
.
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Man erhält für die maximale Abbremsung des reinen ballistic reentry
nach genauer Rechnung das Ergebnis

(5.72)amax = 0.27566... g
√

R

HS

mit der nun durch numerische Integration berechneten Konstanten. Mit
HS = 7 km und R = 6371 km ergibt sich der maximale Beschleunigungs-
wert zu

(5.73)amax ∼ 8.3 g.

Dies ist der klassische maximale „g-Wert“ bei einem rein ballistischen
Wiedereintritt (ballistic re-entry) ohne Auftrieb. Dies passierte zum Bei-
spiel bei den Rückkehrmissionen von Sojus TMA-10 und Sojus TMA-11
im Jahre 2007/2008 von der ISS, wo durch eine fehlerhafte Trennfunktion
beim Abstieg die Raumkapsel automatisch auf rein ballistischen Wie-
dereintritt schaltete und eine maximale Bremsbeschleunigung von 8.5 g
auftrat. Für die entsprechende kritische Höhe maximaler Abbremsung
folgt

(5.74)Ha = 1
2 HS ln

[
R

HS

]
+HS ln[0.669... kD HS ].

Die Geschwindigkeit hat sich da schon auf 43% des ursprünglichen Wertes
reduziert.

Lässt sich nun die maximale Abbremsung (5.72) im Falle eines seichten
Eintauchens durch Einführung eines Auftriebs verringern? Die Antwort
lautet : „Ja!“ Im Falle λ ̸= 0 hat die Gleichung (5.62) mit der Anfangsbe-
dingung Y[0] = 0 (Eintauchen mit Kreisbahngeschwindigkeit v0 =

√
g R

aus „unendlicher“ Höhe) um den Punkt ζ = 0 zwei Lösungszweige. Der
eine Zweig hat die Eigenschaft Y′[0] = 0 und der andere Zweig die Eigen-
schaft Y′[0] = c0 =

√
R/HS Θ. Um die singuläre Stelle ζ = 0 ergeben

sich so die Reihenentwicklungen

Y0[ζ] = 2
√

2
3 ζ

3/2 − 4
11 λ ζ

2 + 1
3

√
2
3

(
1 + 6λ2

121

)
ζ5/2 + . . .(5.75)

Y1[ζ] = c1 ζ − λ c1 − 2
2 c1

ζ2 + 2 c2
1 + λ c1 − 2

6 c3
1

ζ3 + . . . (5.76)
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λ Y1 e
−2ζ Y0 e

−2ζ

1.0 0.37735 0.23344
2.0 0.20467 0.19574
3.0 0.15592 0.16328
4.0 0.13349 0.13679
5.0 0.11790 0.11707
6.0 0.10529 0.10395
7.0 0.09485 0.09469
8.0 0.08628 0.08683
9.0 0.07925 0.07959

10.0 0.07334 0.07319

Tab. 5.1: Die Kennzahlen C[λ] für die maximale Abbremsung, also den
maximalen Wert der Funktion Y0,1e−2ζ während des Wiedereintritts in
die Erdatmosphäre mit Auftrieb. Nur die Kennzahl für das Maximum, von
Y0e−2ζ strebt im Falle λ → 0 gegen den klassischen Wert 0.27566 von (5.72).

mit dem winkelabhängigen Koeffizienten (Θ in Bogenmaß)

c1 =
√

R

HS
sin[Θ]

Mit Hilfe dieser Reihen lassen sich Startwerte in der Umgebung von
ζ → 0 für eine numerische Integration der Gleichung (5.62) finden.
Man stellt fest, dass die Funktion Y1 die Gleichgewichtsflugbahn eines
hypersonischen Gleiters aus den hohen Atmosphärenschichten mit dem
Eintrittswinkel Θ beschreibt, während Y0 die ballistische Eintrittsbahn
eines Flugkörpers mit dem singulären Eintrittswinkel Θ = 0 aus einer
Kreisbahn beschreibt.

Die durch Y1 beschriebene Bahn macht kleine wellenartige Bewegun-
gen um die fast ungestörte Gleitflugbahn, die man als Phygoide mit
„Rikoschettieren“ bezeichnen kann. Dies spiegelt sich auch im Bremsver-
lauf während des Eintrittes in die Atmosphäre wider. In der Figur (5.7)
wird dieser Verlauf als Funktion der abnehmenden Geschwindigkeit für
drei unterschiedliche Eintrittswinkel dargestellt.

In Tabelle (5.1) kann man erkennen, dass mit einem realistischen Auf-
triebsparameter λ ∼ 10 für die Erdatmosphäre die maximale Abbremsung
während des Abstieges auf unter amax ∼ 4 g gedrückt werden kann.
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Fig. 5.7: Bremsverlauf für drei Eintrittswinkel. kD/kL = 3. Wellenförmige
Strukturen sind sichtbar (Phygoide). Zudem treten zwei Bremsphasen auf.
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5.4 Skip Re-Entry aus großen Höhen
Ein wirklicher skip reentry tritt dann auf, wenn ein Raumfahrzeug mit
der zweiten kosmischen Geschwindigkeit

(5.77)v∞ =
√

2 g R

mit flachem Eintauchwinkel in die Erdatmosphäre oder Planetenatmo-
sphäre eintritt. Dies ist zum Beispiel für alle Mondmissionen mit Rückkehr
der Fall. Hier reichen zur Beschreibung der Bahn die Gleichungen von
Yaroshevsky nicht mehr aus. Für diesen Fall des coming home ist es
aber in jedem Fall günstiger und auch notwendig, die ursprünglichen
Bewegungsgleichungen (5.18) und (5.19) numerisch zu integrieren.

Die numerische Integration geht von den beiden Bewegungsgleichungen
(5.18) und (5.19) mit den inversen Längen kD des Luftwiderstandes und
des Auftriebes kL

..
x = −e−y/HS (kD v

.
x+ kL v

.
y) −

.
x

.
y

R
,

..
y = −e−y/HS (kD v

.
y − kL v

.
x) +

.
x2

R
− g.

aus. Wir führen zunächst die ungleichen Skalierungen

x[t] =
√
HS R X[τ ];

y[t] = HS Y [τ ] +HS ln[kD

√
HS R] (5.78)

mit der dimensionslosen Zeit

τ =
√

g

HS
t (5.79)

ein. Mit g = 9.81m/s2 und HS = 8000m entspricht dem Zeitintervall
∆τ = 1 die typische Zeitspanne

∆t =

√
HS

g
≈ 30 sec.

Die dimensionslose Höhenskalierung Y [τ ] hängt mit der Yaroshevsky -
Funktion Y durch die Relation (siehe (5.66))

(5.80)Y = − ln[Y]
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zusammen. Der Erdboden y = 0 ist nun aber nicht mehr identisch mit
Y = 0. Mit (5.78) folgt für den Erdboden der Y - Wert

− ln
[
kD HS

(
R

HS

)1/2
]

Als obere Grenze nehmen wir die Kármán-Linie (siehe Gleichung (5.167)).
Damit gilt für den physikalisch sinnvollen Bereich das Intervall

(5.81)− ln
[
kD HS

(
R

HS

)1/2
]
< Y [τ ] < − ln

[
kD HS

(
HS

R

)3/2
]
.

Die untere Grenze liegt für kD HS ∼ 2 bei etwa −4, die obere Grenze
grob bei +10.

Mit alledem folgt zunächst für die Bewegungsgleichung in horizontaler
und vertikaler Richtung

X ′′ = − e−Y
√
X ′2 + β2 Y ′2

(
X ′ + β2 λY ′)− β2 X ′ Y ′, (5.82)

Y ′′ = −e−Y
√
X ′2 + β2 Y ′2 (Y ′ − λX ′) +X ′2 − 1. (5.83)

In diesen Gleichungen tritt neben dem Auftriebsparameter λ (siehe 5.63)
der für eine typische Planetenatmosphäre relativ kleine Parameter

β =
√
HS

R
(5.84)

auf. Bei der Erde beträgt dieser Parameter β wegen HS ≈ 8 km und
R ≈ 6371 km etwa 0.0354, das Quadrat also nur 0.001. Quadrate von
β wollen wir zunächst in unserem Modell vernachlässigen. Wir wollen
deshalb die obigen Gleichungen weiter vereinfachen. Da die Reentry
- Bahnen immer sehr flach zur Planetenatmosphäre sind, werden wir
für unser numerisch - analytisches Modell den Term proportional β
vernachlässigen. In dieser „Flachbahnnäherung“ gilt nun sehr kompakt

X ′′ + e−Y X ′2 = 0, (5.85)
Y ′′ + e−Y

(
X ′ Y ′ − λX ′2)+ 1 −X ′2 = 0. (5.86)

Als einzige Kennzahl tritt in diesen idealisierten Bewegungsgleichungen
nur noch der Auftriebsparameter λ auf. Damit sind beide gekoppelten
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Fig. 5.8: Ein Vergleich der Yaroshevsky-Funktion Y[ζ] einschließlich der
ersten Korrektur (rot) mit der entsprechenden Funktion exp[−Y [τ ]] als Funk-
tion von ζ = − ln[X′[τ ]].

Gleichungen der Yaroshevsky- Gleichung (5.62) äquivalent. Wir wollen
dies direkt zeigen, indem wir die kritische Kennzahl 0.275... der maxi-
malen Beschleunigung aus den obigen Gleichungen ableiten. Wir setzen
also zunächst λ = 0 und erhalten

X ′′ + e−Y X ′2 = 0,
Y ′′ + e−Y X ′ Y ′ + 1 −X ′2 = 0.

Diese Gleichungen müssen wir jetzt bei einem ballistischen Eintritt mit
den Anfangsbedingungen

X[0] = 0; X ′[0] = 1; Y [0] = 10; Y ′[0] = 0

lösen. Der Bremsverlauf ergibt sich zunächst zu (hier negativ normiert)

(5.87)a = −(X ′[τ ]2 + β2 Y ′[τ ]2) e−Y [τ ] g

√
R

HS

Da β ≪ 1 (siehe (5.84)) ist, können wir mit der obigen Bewegungsglei-
chungen für den Verlauf genügend genau auch

(5.88)a = X ′′[τ ] g
√

R

HS
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schreiben. Eine numerische Integration ergibt als Maximum der Bremsbe-
schleunigung bei einem ballistischen Eintritt die kritische Zahl 0.2758...,
in sehr guter Übereinstimmung mit der Yaroshevsky-Gleichung. Auch die
direkte Korrespondenz

(5.89)Y[ζ] ≡ e−Y [τ ]; ζ = − ln[X ′[τ ]]

wird durch ein Vergleich mit der Funktion (5.70) in der Figur (5.8) sehr
schön bestätigt.

Bei einer Mondrückkehrbahn wählen wir in den dimensionslosen Skalen
jetzt die Eintrittsdaten

X[0] = 0; X ′[0] =
√

2 cos[Θ];

Y [0] = 10; Y ′[0] = −
√

2
β

sin[Θ].

bei dieser wesentlich höheren Geschwindigkeit tritt trotz flachem Eintritt
das Phänomen auf, dass durch den konstanten Auftrieb die Raumkapsel
zwar abgebremst, aber danach wieder so stark abprallt, dass sie einen
sehr weiten Bogen bis zum nächsten Wiedereintritt vollführt. Es muss
daher nach dem Abprall Vom Flugmodus “Auftrieb” zum Flugmodus
“Abtrieb” gewechselt werden. Der Parameter λ muss also sein Vorzeichen
wechseln.

Frühere Abschätzungen lassen vermuten, daß die Abstiegsbahn einen
Sattelpunkt hat, wenn C ≈ 10 ist. Diese kritische Kennzahl C können
wir jetzt genau numerisch berechnen. Die zwei Bedingungen für einen
Sattelpunkt zu irgendeinem Zeitpunkt τs lauten

Y ′[τs] = 0; X ′[τs] = 1. (5.90)

Erst jetzt wird der freie Kurvenparameter C zu einer kritischen Kennzahl
, welche mit (??) die Sattelpunkt - Passage bestimmt. Nach einer para-
metrischen numerischen Integration der beiden Bewegungsgleichungen
lassen sich die Hilfsvariable τs und die wichtige Kennzahl C aus den
zwei Bedingungen (5.90) bestimmen. Die kritische Kennzahl C für eine
Wiedereintrittsbahn mit Sattelpunkt ist in diesem mathematischen Modell
dann genähert

Cinflection = 10.6674 . . .. (5.91)
Diesen Wert in (??) eingesetzt führt zur anvisierten Perigäumshöhe HP

für eine Sattelpunktbahn. Im Vergleich zur Relation (5.206) mit C =
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Fig. 5.9: Eine ballistische Eintauchbahnen mit einem Eintrittswinkel von
5.1 Grad. Die Farbcodierung entspricht der Stärke der Bremsbeschleunigung,
die in der zweiten Bremsphase am größten ist. Dagen ist die thermischen
Belastung der Raumkapsel bei der ersten Bremsphase am größten. Die Bahn
form ist sehr sensitiv bezüglich Änderungen der Flug-Parameter, so dass beim
rein ballistischen Wiedereintritt der erlaubte Flugkorridor schwer einzuhalten
ist. Aus diesem Grunde konnten die Apollokapseln in den 1960er und 1970er
Jahren durch wechselnde Verlagerungen des Schwerpunktes (einfache 180
Grad - Drehung der Raumkapsel um die Symmetrieachse der Rotation) kleine
aerodynamische Auftriebe oder Abtriebe erzeugen, um bei Nichteinhaltung des
Korridors schnell Feinkorrekturen durchführen zu können.

√
2π/ln[2] ≈ 3.616 ist der Parameter fast um das Dreifache größer. In der

Figur (5.9) sind drei unterschiedliche ballistische Wiedereintrittsbahnen
graphisch veranschaulicht. Die Parameter sind dabei HS = 8000m,
k = 3 · 10−4 m−1, und g = 9.81m/s2. Wie man sieht, kann schon eine
Erhöhung der Perigäumshöhe um 1 km fatale Folgen haben. In Fig (5.10)
ist zusätzlich die Bremsbeschleunigung für die Bahn mit dem Parameter
HP = 52 km dargestellt. Das Hauptcharakteristikum sind hier zwei
Bremsphasen, welche eine Folge des doppelten Eintauchens in die oberen
Atmosphärenschichten ist. Der mittlere Wert der Abbremsung (G-load)
lässt sich dabei recht gut durch die Formel

(5.92)ac ∼ g k R exp
[
−HP

HS

]
abschätzen.
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Fig. 5.10: Die Bremsbeschleunigung als Funktion der Zeit bei einer ballis-
tischen Eintrittsbahn mit Θ = 5.1 Grad. Die Werte sind in Einheiten der
Erdbeschleunigung g (G-loading) angegeben. Bei diesem Typ von Bahnen
treten zwei „Eintauchphasen“ auf. Die maximale Bremsung ist hier knapp
über 6 g.

H[km] Θ[◦]
300 11.20
250 10.05
200 8.72
150 7.14
122 6.07
100 5.06

H[km] Θ[◦]
300 11.09
250 9.92
200 8.58
150 6.96
122 5.86
100 4.80

Tab. 5.2: Der Wiedereintrittswinkel bei einer Parabelbahn bis zur Höhe
der Karman-Schicht als Funktion der Flughöhe für eine Perigäumshöhe HP

von 50 km (linke Tabelle) und 55 km (rechte Tabelle). Die NASA legt den
offiziellen Eintrittswinkel in einer Höhe von 400000 Fuß (≈ 122 km) fest.
Der entsprechende Wert ist hier fett gedruckt.

Der physikalische Vorgang des Eintauchens gleicht bis zu einem gewis-
sen Grad dem Abprall eines platten Kieselsteines von der Wasserober-
fläche, wenn der Winkel sehr flach ist. Das scheinbare „Abprallen“ eines
ballistischen Flugkörpers von der Erdoberfläche heißt hier natürlich nur
der fast ungestörte Weiterflug in einer Parabelbahn oder Ellipsenbahn,
weil die Luftbremsung nicht stark genug war, den Körper vollständig
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in die Atmosphäre abtauchen zu lassen. Da für Zeiten t < 0 vor dem
Eintauchen für die Höhe der Raumkapsel als Funktion der Zeit ein geome-
trischer Zusammenhang gilt, folgt für den Tangens des Eintauchwinkels
(Winkel hier positiv angenommen)

Θt≪0 ∼
√
H −HP

R
. (5.93)

Die Tabelle (5.2) zeigt typische Werte für den Eintauchwinkel tan[Θ] = P
als Funktion der momentanen Höhe H über der Erdoberfläche, wenn die
vorgegebene Perigäumshöhe HP anvisiert wird. Bezieht man sich beim
Eintauchen auf das Niveau der sogenannte Kármán-Linie, so ergibt sich
der kritische Eintauchwinkel in erster Abschätzung zu

(5.94)Θ ∼

√
3HS

2R ln
[
R

HS

]
.

Die Formel folgt aus (5.207) und (5.167), wie in einem späteren Kapitel
noch gezeigt werden soll. Mit der Skalenhöhe HS = 8 km und R =
6371 km ergibt sich so für den kritischen Eintauchwinkel, um von einer
Entweichgeschwindigkeit auf eine Kreisbahngeschwindigkeit abzubremsen,
der Wert Θ ∼ 6.43◦ Grad. Diese Zahl (≈ 7◦) spielte bei allen Apollo-
Mondmissionen der 1970er Jahre bei der Rückkehr vom Mond eine
wichtige Rolle.

Zum Abschluss wollen wir alternativ auch eine genauere Aussage zur
Bahnkurve machen, wenn der Einstieg mit der Entweichgeschwindigkeit√

2 g R erfolgt. Mit der differentiellen Bogenlänge ds = v dt läßt sich
alternativ die Gleichung (5.55) auch als

(5.95)dθ

ds
= −

(
g

v2 − 1
R

)
cos[θ]

schreiben. Wir benutzen wieder die Beziehungen

(5.96)tan[θ] = y′; cos[θ] = 1√
1 + y′2

; dθ

ds
= y′′

(1 + y′2)3/2 .

und erhalten für das Geschwindigkeitsquadrat

(5.97)v2 = g R
1 + y′2

1 + y′2 −Ry′′ .
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Andererseits machen wir in (5.52) die Substitution

(5.98)dv

dt
= v

dv

ds
= 1

2
d

ds
{v2} = 1

2
√

1 + y′2

d

dx
{v2}

und erhalten für v2 die Differentialgleichung

(5.99)d

dx
{v2} + 2 kD e−y/HS

√
1 + y′2 v2 + 2 g y′ = 0.

Durch Einsetzen von (5.97) in (5.99) ergibt sich eine recht komplizierte
Differentialgleichung für y[x], die hier aber nicht explizit aufgeschrieben
werden soll.

5.5 Flugdynamik hypersonischer Raumgleiter
Bis jetzt haben wir nicht den Einfluss einer aerodynamischen Auftriebs-
kraft auf ein in die Erdatmosphäre eindringendes Flugobjekt berücksich-
tigt. In der Fig. (5.2) ist ein Beispiel für die Flugbahn eines hyperso-
nischen Raumgleiters dargestellt. Wir wollen die Eigenschaften dieser
halb-ballistischen Flugbahn analytisch genauer verstehen. Die Bahn ist
nämlich nicht mehr rein ballistisch, sondern wird auch durch aerodyna-
mische Auftriebskräfte bestimmt. Wir benutzen dazu die idealisierten
Modellgleichungen (5.18) und (5.19) und schreiben vereinfacht

..
x+ kD[y] v .

x+ kL[y] v .
y = −

.
x

.
y

R
, (5.100)

..
y + kD[y] v .

y − kL[y] v .
x = +

.
x2

R
− g. (5.101)

Hier sind kD[y] (drag force) und kL[y] (lift force) die lokalen aerodyna-
mischen Koeffizienten um die Referenzbahn in der relativen Höhe y = 0.
Mit der Skalenhöhe HS kann man für diese Größen in Abhängigkeit von
der Abweichung y

(5.102)kD[y] → kD e−y/HS ; kL[y] → kL e
−y/HS .

schreiben. Die relative Höhe y = 0 bezieht sich auf das ungestörte
Bahnniveau, y < 0 geht in Richtung Erdboden und y > 0 entsprechend
entgegengesetzt.

150



Wir wollen jetzt in der y-Gleichung die abhängige Zeitvariable t durch
die Raumvariable x ersetzten. Es gilt allgemein

.
y = dy

dx
.
x, (5.103)

..
y = d2y

dx2
.
x2 + dy

dx
..
x. (5.104)

Mit Hilfe von (5.100) können wir für die letztere Identität (5.104) auch

(5.105)..
y = d2y

dx2
.
x2 − kD[y] v .

x
dy

dx
− kL[y] v .

x

(
dy

dx

)2
−

.
x2

R

(
dy

dx

)2
.

schreiben. Wird dies in (5.101) eingesetzt, folgt zunächst

(5.106)d2y

dx2
.
x2 − kL[y] v .

x

{
1 +

(
dy

dx

)2
}

=
.
x2

R

{
1 +

(
dy

dx

)2
}

− g.

Wir machen jetzt weitere Idealisierungen. Da die Gleitkurve bis zum
Punkt des Abtauchens in die tiefere Erdatmosphäre sehr flach ist (y′2 ≪
1), wird man sicherlich v ∼ .

x annehmen können. Deshalb erhalten wir
mit (5.102) schließlich die Modellgleichung für y → y[x]

(5.107)d2y

dx2 − kL exp
[
− y

HS

]
= 1
R

− g
.
x2 .

Diese Gleichung führt im Spezialfall kL → 0 und R → ∞ zur klassischen
Wurfparabel zurück.

Im letzten Schritt müssen wir die Größe .
x2 konsistent in der gleichen

Approximation als Funktion von y[x] ausdrücken. Das geschieht durch
die Gleichung (5.100) unter Vernachlässigung des Termes proportional
kL. Dann gilt für extreme Flachbahnen .

x ∼ v

(5.108)dv

dx
= −kD e−y[x]/HS v

Die Lösung dieser Gleichung mit der horizontalen Anfangsgeschwindigkeit
v[0] = v0 lautet

(5.109)v[x] = v0 exp
[
−kD

∫ x

0
e−y[s]/HSds

]
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Wird dieser Ausdruck jetzt in (5.107) eingesetzt, ergibt sich die nichtli-
neare Integrodifferentialgleichung

(5.110)d2y

dx2 − kL exp
[
− y

HS

]
= 1
R

− g

v2
0

exp
[
2 kD

∫ x

0
e−y[s]/HSds

]
für die semi-ballistische Gleitbahn eines hypersonischen Raumkörpers in
der oberen Stratosphäre.

Man kann diese Integrodifferentialgleichung in eine äquivalente Dif-
ferentialgleichung überführen. Dazu schaffen wir den Term 1/R auf die
linke Seite, dann logarithmieren und differenzieren wir beiden Seiten nach
x und erhalten in der Näherung flacher Flugbahnen

(5.111)
d3y

dx3 − 2 kD e−y/HS
d2y

dx2 + kL

HS
e−y/HS

dy

dx
+

+2 kD

R
e−y/HS + 2 kD kL e

−2 y/HS = 0.

Die Geschwindigkeit v0 und die Erdbeschleunigung g sind hier verschwun-
den, sie stecken jetzt in den Anfangsbedingungen. Eine analytisch exakte
Lösung dieser idealisierten Fundamentalgleichung scheint unmöglich und
auch nicht wünschenswert. In der folgenden asymptotischen analytischen
Betrachtung soll immer kD ̸= 0 als auch kL ̸= 0 vorausgesetzt werden.
Wir wissen aus numerischen Simulationen, dass der Flugkörper bei Ge-
schwindigkeiten knapp unterhalb von v0 <

√
g R eine schwach abwärts

führende Gleitbahn durchläuft. Da eine Linearisierung um y = 0 aufgrund
einer abwärts führenden Gleitbahn nicht in Frage kommt, machen wir
zunächst die bewährte Substitution

(5.112)y[x] = HS ln[F [x]],

bei der F [x] eine dimensionslose Funktion im Bereich F > 0 mit F [0] = 0
bezeichnet. Für F [x] gilt dann die Differentialgleichung

2 kD kL + 2kD

R
F + kL F

′ − 2HS kD F ′′ +

+2HS kD
F ′2

F
+ 2HS

F ′3

F
− 3HS F

′F ′′ +HS F F
′′′ = 0.

Die ersten drei Terme sind frei von der Skala HS . Setzen wir ihre Summe
gleich Null, so ergibt sich mit der IntegrationskonstantenC1 die Lösung

(5.113)F [x] = C1 exp
[
−2 kD x

kL R

]
− kLR.
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Setzt man diese Lösung wieder in die Integrodifferentialgleichung ohne
den Term y′′ ein, so folgt für die Integrationskonstante C1 der Ausdruck

(5.114)C1 = kL R

1 − v2
0/(gR) .

Damit gilt schließlich für die abwärts-führende Flugbahn in der ange-
strebten Näherung die Gleichung

(5.115)y[x] = HS ln

kLR

exp
[
−2 kD x

kL R

]
1 − v2

0
gR

− 1

 .
In dieser Formel können wir nun durch Umeichung die Größe kL auf
die Planetenoberfläche beziehen, so dass y[x] jetzt die tatsächliche Höhe
über dem Planetenboden beschreibt. Führen wir wieder die Höhen - und
Geschwindigkeitsvariable η sowie ζ ( siehe 5.27,5.39 ) gemäß

η = exp[−y/HS ], v = v0 exp[−ζ]

ein, so gilt anstatt (5.115)

(5.116)η = 1
kLR

{
g R

v2
0
e2 ζ − 1

}
.

Diese relativ einfache Funktion definiert in unserem idealisierten Modell
in erster Näherung die semi-ballistische Gleitbahn eines hypersonischen
Raumkörpers mit der Anfangsgeschwindigkeit v0 <

√
g R. E. Sänger

nannte diese Flugbahn die Gleichgewichtsbahn. Diese Formel folgt auch
als Näherung aus der Yaroshevsky Gleichung (5.62).

Wir können mit (5.115) eine Abschätzung zur Reichweite W des Gleit-
fluges machen. Aus der Forderung, dass die Klammer in (5.115) null wird,
erhält man die gute Näherung

(5.117)φW = W

R
= −1

2
kL

kD
ln
[
1 − v2

0
g R

]
,

welche innerhalb von etwa 5% sehr gut mit numerischen Simulationen
übereinstimmt. Da W längs der Erdoberfläche gemessen wird, ist φW der
entsprechende Polarwinkel. Die Formel (5.117) ist ein erstes wichtiges
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Fig. 5.11: Die Gleichgewichts-Gleitflugbahn für die Parameter kD R = 0.1
und kL R = 0.3, welche mit der Formel (5.115) sehr genau beschrieben werden
kann. Da hier v2

0 = g R/(1 + kLR) gilt, ist y[φ] mit x = R φ immer negativ.

Ergebnis zur Theorie hypersonischer Gleiter. Im Geschwindigkeitsbereich
über 5 Mach (v0 > 5 cs) kann nach empirischen Messungen das Verhältnis
kL/kD nicht wesentlich größer als 4 werden. Bemerkenswert ist zudem,
dass die Reichweite des hypersonischen Gleitfluges nur von den Verhält-
nissen v0/

√
gR sowie kL/kD abhängig ist, nicht aber von ihren absoluten

Werten. Diese gehen in die Bahnkurve (5.115) ein. Mit Hilfe von (5.109)
und (5.115) ist es möglich, auch die Geschwindigkeit als Funktion der
horizontalen Flugstrecke x oder des Polarwinkels φ = x/R darzustellen.
Man erhält

(5.118)v2

gR
= 1 −

(
1 − v2

0
gR

)
exp

[
2 kD

kL
φ

]
.

154



Damit läßt sich auch die Flugzeit bis zum Ziel mit

(5.119)T = 1
2
kL

kD

√
R

g
ln
[

1 + v0/
√
gR

1 − v0/
√
gR

]
berechnen. Auch hier hängt die Flugzeit nur von den Verhältnissen der
entscheidenden Parameter ab. Für den Gleitwinkel θ erhalten wir dann

(5.120)tan[θ] = y′[x] = −2 kD

kL

g HS

v2 .

Man sieht, dass mit abnehmender Geschwindigkeit der nach unten ge-
neigte Gleitwinkel immer weiter zunimmt.

Wir können auch eine grobe Abschätzung über die thermische Belastung
des Flugkörpers zu machen. Multiplizieren wir (5.100) mit .

x, (5.101) mit.
y und addieren beide Gleichungen, so ergibt sich für den spezifischen
aerodynamischen Energieverlust der Ausdruck

(5.121)dE
dt

= −kD e−y/HS v3.

Wie zu erwarten, hat hier der Lift-Parameter kL keinen direkten Einfluss.
Setzt man hier den Ausdruck für y[x] ein und eliminiert die Flugstrecke
x durch v, so gilt überraschend einfach

(5.122)dE
dt

= −kD

kL
g v

(
1 − v2

gR

)
.

Aus dieser Beziehung folgt, dass die maximale thermische Belastung bei
einer Gleitgeschwindigkeit

(5.123)vE =
√
gR

3

auftritt. Ist v0 < vE , so tritt maximale thermische Belastung sofort bei
Beginn dr Gleitphase ein. Die Gleitstrecke WE , bei der diese maximale
Belastung auftritt, folgt aus

φE = WE

R
= −1

2
kL

kD
ln
[

3
2

(
1 − v2

0
gR

)]
.
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Die kritische Höhe HE maximaler Hitzebelastung liegt dann bei

HE = HS ln
[
kL R

2

]
≡ HS ln

[
R

HS

]
+HS ln[kLHS/2].

Liegt der Beginn des Gleitfluges genau in dieser Höhe, so sieht man,
dass die kritische Belastung schon am Anfang der Bahn stattfindet. Im
kritischen Falle kLR = 2 gilt v0 = vE und die maximale thermische
Belastung tritt wirklich zu Beginn des Gleitfluges auf. Historisch ist noch
interessant, dass die Beziehungen (5.117) und (5.118) wohl zum erstenmal
im Jahre 1958 in dem NACA-TR-1382 Report: A Comparative Analysis
of the Performance of Long-Range Hypervelocity Vehicles veröffentlicht
wurden ([2]).

Simulationen zeigen, dass die abwärts führende steuerlose Flugbahn
keine echte monoton fallende Kurve, sondern eine wellenförmige Gleit-
bahn darstellt. Dies wird verständlich, da durch die Abbremsung der
Raumkörper in tiefere Luftschichten eindringt und dort die Gleichge-
wichtsgeschwindigkeit nicht mehr exakt erfüllt ist. Wir wollen für diese
charakteristische Wellenstruktur eine genäherte theoretische Beschrei-
bung ableiten. Dazu linearisieren wir die Gleichung (5.111) durch den
Ansatz

(5.124)y[x] = HS ln

kLR

exp
[
−2 kD x

kL R

]
1 − v2

0
gR

− 1

+ ψ[x] + . . .

und vernachlässigen Quadrate der als klein angenommenen Funktion ψ[x].
Einsetzen in (5.111) führt mit einem CAS System auf eine lineare Diffe-
rentialgleichung dritter Ordnung in ψ[x]. Da wir an den Wellenstrukturen
dieser Funktion interessiert sind, vernachlässigen wir den Absolutterm
und den Term proportional ψ[x] in dieser Gleichung. Im letzten Schritt
führen wir die neue unabhängige Variable z gemäß der Transformation

z =
(

1 − v2
0
gR

)
exp

[
2 kDx

kLR

]
(5.125)

ein. Im Falle z = 1 befindet sich das Flugobjekt im Zielgebiet. Damit
erhalten wir für ψ′[z] die lineare Differentialgleichung

(5.126)z2 (1 − z) d
3ψ

dz3 + z (3 − 4 z) d
2ψ

dz2 +
(

1 +
(

k2
LR

4 k2
DHS

− 2
)
z

)
dψ

dz
= 0.
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Die Lösungen sind Legendrefunktionen der ersten und zweiten Art

(5.127)ψ′[z] = C1
Pℓ[2 z − 1]

z
+ C2

Qℓ[2 z − 1]
z

mit dem Parameter

(5.128)ℓ = −1
2 + 1

2

√
1 + k2

L

k2
D

R

HS
.

Die Struktur des wellenförmigen Rikoschettierens und dessen Dämp-
fung wird durch die Legendre-Polynome bzw. Legendrefunktionen schon
ausreichend genau beschrieben.

5.6 Satellitenbahnen mit Luftreibung
(Aerobraking)

Seit künstliche Satelliten um die Erde fliegen, gibt es das Problem, die
Abbremsung von tieffliegenden Satelliten quantitativ abzuschätzen und so
Aussagen über ihre Lebensdauer zu machen. Ausgedehnte Atmosphären
von Planeten können durch ihre Bremswirkung entweder die exzentrische
Bahn einer Sonde immer kreisförmiger machen und so deren ballistische
Landung auf dem Planeten vorbereiten (Aerobraking) oder ihn verglühen
lassen. Daher wollen wir etwas genauer untersuchen, wie sich der Luft-
widerstand insbesondere auf die zeitliche Entwicklung der Ellipsenbahn
von Erdsatelliten auswirkt.4

Wir modellieren die gestörte Keplerbewegung einer Planetensonde
durch die Vektorgleichung

..r = −GM r
r3 − k[r] v .r, (5.129)

wo G die Gravitationskonstante, M die Masse des Planeten (Erde), r
der Ortsvektor der Sonde und k[r] ein ballistischer Koeffizient bedeuten,
der nur vom radialen Abstand r zum Planetenmittelpunkt abhängt. Die

4Historisch ist es sehr interessant, dass schon 1797 der preußische Offizier und
Astronom J.P von Rohde die Einwirkung von Luftwiderstand auf Keplerbahnen
(Kometenbahnen) untersucht hat.([46])

158



H2H1

Fig. 5.13: Geometrische Kenngrößen bei der Abbremsung einer Satelli-
tenbahn in den tieferen Atmosphärenschichten eines Planeten (Erde). H1
bezeichnet die Perigäumshöhe, H2 die Apogäumshöhe der Satellitenbahn über
der Erdoberfläche.

Geschwindigkeit der Sonde ist v = |.r|. Skalare Multiplikation dieser
Gleichung mit .r führt auf

d

dt

(
1
2
.r2 − GM

r

)
= −k[r] v3. (5.130)

Eine ähnliche Gleichung hat auch schon von Rohde im Jahre 1797 er-
halten, um den vermeintlichen Zerfall von Kometenbahnen abzuschätzen.
Multiplizieren wir weiter von links die Gleichung (5.129) vektoriell mit r,
so erhalten wir nach einer kleiner Umrechnung

d

dt
(r × .r) = −k[r] v (r × .r) . (5.131)

Diese Gleichung besagt anschaulich, dass der spezifische Drehimpuls
L = r × .r der Keplerbahn mit der zeitlichen Rate k(r) v exponentiell
zerfällt. Wegen |L|=

√
GM p, wo p den sogenannten Bahnparameter
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p = a (1 − ϵ2) der Bahnellipse bezeichnet, erhalten wir so die zweite
Variationsgleichung

(5.132)d

dt
ln[p] = −2 k[r] v.

Sie besagt, dass die große Halbachse der Ellipse mit einer bestimmten
Rate immer kleiner wird. Als einfachsten Fall betrachten wir zunächst
eine Kreisbahn. Wir machen die Hypothese, dass durch Luftreibung der
Radius r[t] dieser kreisförmigen Bahn sich langsam verkleinert und sich
so der Satellit immer mehr dem Erdboden nähert. Wir prüfen diese
Hypothese anhand der Variationsgleichung (5.132). Bei einer Kreisbahn
ist a ≡ p und die Variationsgleichung lautet

d

dt
{ln r[t]} = −2 k[r] v. (5.133)

Später werden wir sehen, dass hier anstatt 2 auch 2/3 stehen kann. In
jedem Falle folgt sofort die säkulare Entwicklungsgleichung für den Radius
r[t]

.
r[t] + 2 k[r] r v = 0. (5.134)

Aus der ersten Gleichung können wir schon schließen, dass sich der Bahn-
radius des tieffliegenden Satelliten immer mehr verkleinert, gleichzeitig
aber - trotz Abbremsung - die Geschwindigkeit gemäß dem Keplerschen
Gesetz immer mehr vergrößert. Die Erfahrung lehrt aber, dass dies nicht
immer so weitergehen kann, da irgendwann in den tieferen Luftschichten
der Satellit auf aerodynamische Fallgeschwindigkeit abgebremst werden
wird. Wir wollen diesen kritischen Übergang hier etwas genauer unter-
suchen. In den frühen 1960er Jahren konnte man aus der Änderung
der gut messbaren Umlaufzeit TU eines Satelliten auf den ballistischen
Koeffizienten k[r] und so auch auf die Luftdichte schließen. Denn es gilt
mit den obigen Gleichungen

.
TU

TU
= −3 k[r] v. (5.135)

Als sehr einfaches Modell für den ballistischen Koeffizienten nehmen wir
wieder die barometrische Höhenformel

k[r] = k exp
[
R− r

HS

]
. (5.136)
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Die ballistische Konstante k ≡ kD (inverse Länge; „drag force“) gilt jetzt
für den Erdboden (r = R). Die Skala HS liegt in der Troposphäre der
Erde bei etwa 8000 Metern, ist aber in der Thermosphäre größer und
kann zudem mit der Tageszeit und bei plötzlich ausbrechenden „Sonnen-
stürmen“ stark schwanken. Da die mittlere freie Weglänge der Moleküle
in diesen höheren Schichten mit der Ausdehnung eines Satelliten vergleich-
bar ist, spielt auch die sogenannte Knudsen - Zahl für die Berechnung
des Strömungswiderstandes eine Rolle. Aus den obigen Gleichungen folgt
dann durch Einsetzen die wichtige radiale Driftgleichung erster Ordnung
in k

(5.137).
r + 2 k

√
GM r exp

[
R− r

HS

]
= 0.

Das allgemeine Integral dieser Gleichung lautet

(5.138)
√
πHS Erfi

[√
r

HS

]
= C − 2 k

√
GM exp

[
R

HS

]
t,

wobei Erfi[z] die mit −ı multiplizierte Fehlerfunktion für rein imaginäres
Argument bedeutet. Die Konstante C folgt aus der Randbedingung
r(0) = R + H0 mit der Anfangshöhe H0. Die asymptotische Lösung
dieser Differentialgleichung lautet mit der Anfangshöhe r(0) = R+H0
(H0/R ≪ 1)

(5.139)H[t] = HS ln
[
exp

[
H0

HS

]
− 2 k R

√
g R t

HS

]
.

Durch Einführung der Lebenszeit

(5.140)TL = eH0/HS

4π k R

[
HS

R

]
TU

eines Satelliten in Erdnähe ergibt sich für die zeitliche Abnahme der
Flughöhe die einfache Beziehung

(5.141)H[t] = H0 +HS ln
[
1 − t

TL

]
.

Computersimulationen auf Basis der Gleichung (5.129) zeigen nun, dass
die zeitliche Abnahme des Bahnradius einer kreisförmigen Satellitenbahn
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Fig. 5.14: Der kontrollierte Absturz des 14 Tonnen schweren ATV-002
Frachters „Johannes Kepler“ von der Internationalen Raumstation im Juni
2011. Da einige Details des Verglühens in der Erdatmosphäre bis heute nicht
gut verstanden sind, hatte er einen „Reentry Break-up Recorder“ an Bord .
In etwa 80 km Flughöhe brach allerdings der Kontakt ab. (Bild: ESA)

sehr genau der analytischen Formel (5.141) folgt. Auch die Geschwindig-
keit nimmt nach dem Keplerschen Gesetz in den tieferen Atmosphären-
schichten zunächst weiter zu. Bei einer bestimmten Höhe HK allerdings
erreicht der Satellit kurz vor dem Ende seiner Lebenszeit seine maximale
Orbitalgeschwindigkeit. Simulationen zeigen jetzt, dass kurz danach die
Geschwindigkeit sehr schnell abnimmt und die säkulare Gleichung (5.134)
erster Ordnung in k nicht mehr gültig ist. Der Satellit durchläuft eine
kurze maximalen Bremsphase und stürzt danach schnell ab. In dieser
Endphase maximaler Abbremsung und Energiedissipation findet in den
meisten Fällen auch das Verglühen statt.

Bis jetzt haben wir den Abstieg eines Satelliten in einer Kreisbahn
behandelt. Die Verhältnisse bei einer Ellipsenbahn sind qualitativ anders.
Es gibt jetzt keinen Punkt maximaler Geschwindigkeit mehr, dafür aber
beim Abstieg in die Atmosphäre einen Zeitpunkt minimaler Exzentrizität.
Bezeichnet man jetzt die Perigäumsdistanz mit r1, die Apogäumsdistanz
mit r2, so gilt in der Ellipsengeometrie

a = r1 + r2

2 ; p = 2 r1 r2

r1 + r2
ϵ = r2 − r1

r2 + r1
. (5.142)

Außerdem gelten für den Radius r und die Geschwindigkeit v als Funktion
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der wahren Anomalie φ die Beziehungen

r = p

1 + ϵ cos(φ) , v2 = GM

(
2
r

− 1
a

)
. (5.143)

Ist der Winkel φ gleich Null, geht die Sonde durch ihr Perigäum (Erdnähe),
ist der Winkel ±180 Grad, geht sie durch das Apogäum (Erdferne) der
Bahn. Mit alledem lassen sich die beiden obigen Variationsgleichungen
umschreiben und vereinfachen zu dem äquivalenten Paar

.
r1

r1
= −k[r] v[r] (1 − cos[φ]) (r1 + r2)

r2
,

.
r2

r2
= −k[r] v[r] (1 + cos[φ]) (r1 + r2)

r1
.

Diese Formeln dürfen für eine realistische Abschätzung weiter vereinfacht
werden. Da der ballistische Koeffizient k (inverse Länge) entlang der
Flugbahn aus mehreren Gründen nur unsicher modelliert werden kann,
die betrachten Bahnen zudem nicht extrem exzentrisch sind, so dürfen
wir in guter Approximation

d

dt
ln[r1[t]] ∼ −2 k[φ] (1 − cos[φ]) v[φ], (5.144)

d

dt
ln[r2[t]] ∼ −2 k[φ] (1 + cos[φ]) v[φ] (5.145)

schreiben. Schon hier kann man den entscheidenden Mechanismus der
Abbremsung (Aerobraking) von tieffliegenden Planetensonden sehen. Ge-
rade wenn sich die Sonde im Perigäum der Bahn (φ = 0) befindet, wo die
Luftdichte am höchsten ist, erfährt die Perigäumsdistanz r1[t] nur eine
minimale säkulare Änderung (1 − cos(φ) ≈ 0), während die Apogäums-
distanz r2[t] eine maximale Änderung erfährt. Die elliptische Bahn der
Sonde wird also durch die Luftreibung zunächst kreisförmiger gemacht,
bevor sie in tiefere Atmosphärenschichten abtaucht.

Wir wollen die obigen Entwicklungsgleichungen für den häufig vorkom-
menden Fall niedrig fliegender Satelliten noch weiter vereinfachen. Wir
approximieren die Bewegung der Sonde zwischen den beiden Höhenextre-
ma H1 (Perigäum) und H2 (Apogäum) über der Erdoberfläche durch die
harmonische Näherung

y ∼ 1
2(H1 +H2) + 1

2(H1 −H2) cos(φ). (5.146)

163



Für die Geschwindigkeit v nahe der Erdoberfläche setzen wir einfach
v =

√
g R, wo g die Oberflächenbeschleunigung und R den Erdradius

bezeichnen. Variationen dieser Orbitalgeschwindigkeit liegen bei den
erdnahen Bahnen in der Größenordnung von δH/R und dürfen hier
vernachlässigt werden. Auch die Quotienten .

r1,2/r1,2 können wir durch
die Ausdrücke

.
H1,2/R approximieren. Führen wir noch eine Mittlung

durch, indem wir über einen vollen Umlauf φ integrieren und durch 2π
dividieren, so ergeben sich die merkwürdigen Gleichungen

(5.147)dH1

dt
= −V e

− H1+H2
2 HS

(
I0

[
H2 −H1

2HS

]
− I1

[
H2 −H1

2HS

])
und

(5.148)dH2

dt
= −V e

− H1+H2
2 HS

(
I0

[
H2 −H1

2HS

]
+ I1

[
H2 −H1

2HS

])
.

Die Funktionen I0[z] und I1[z] bezeichnen modifizierte Besselfunktionen
und V bedeutet die Geschwindigkeitskonstante

V = 2 k R
√
g R. (5.149)

Die obigen Entwicklungsgleichungen beschreiben in unserem stark idea-
lisierten Modell die unterschiedlich schnelle Abnahme der Perigäumshöhe
und der Apogäumshöhe (H1 < H2) mit der Zeit. Die einfache Lösung
(5.141) legt es nahe, im anderen Extremfall einer stark elliptischen Bahn
die modifizierten Besselfunktionen für ein großes Argument asymptotisch
zu approximieren. Wir setzen genähert für x → +∞

I0[x] + I1[x] ∼ 2 ex

√
2π x

+ . . .

I0[x] − I1[x] ∼ ex

2x
√

2π x
+ . . .

Mit diesen Näherungen lauten die Gleichungen (5.147) und (5.148)
vereinfacht

(5.150)dH1

dt
∼ − V√

π

(
HS

H2 −H1

)3/2

e
− H1

HS

und
(5.151)dH2

dt
∼ −2V√

π

(
HS

H2 −H1

)1/2

e
− H1

HS .
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Fig. 5.15: Computersimulation für die Perigäumshöhe (rot) und Apogäums-
höhe (blau) einer exzentrischen Satellitenbahn beim Eintauchen in die Erdat-
mosphäre. Deutlich ist zu sehen, dass die Apogäumshöhe mit der Umlaufzeit
„stufenweise“ abgebaut wird, da nur in Perigäumshöhe die Luftreibung beson-
ders effektiv ist. Die Skala HS wurde hier zu 8 km angenommen.

Aus diesen gekoppelten Gleichungen folgt asymptotisch das Differential

dH2

dH1
∼ 2 H2 −H1

HS
.

Das Integral dieser Relation ist

H2 −H1 ∼ HS

2 + C1 exp
(

2 H1

HS

)
C1 ist hier eine Integrationskonstante, die mit den Anfangsbedingungen
festliegt. Da die Beziehung asymptotisch gilt, vernachlässigen wir den
kleinen Summanden HS/2 und erhalten die auch physikalisch einsichtige
Beziehung

H2 −H1 ∼ (H20 −H10) exp
(

2 H1 −H10

HS

)
. (5.152)
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Fig. 5.16: Das stufenweise Abnehmen der Exzentrizität einer erdnahen
elliptischen Satellitenbahn in einer Computersimulation. Es existiert kurz
vor dem Absturz ein Punkt minimaler Exzentrizität, ab dem die Exzentrizität
abrupt dem asymptotischen Grenzwert 1 zustrebt. Gleichzeitig halbiert sich
der Wert der großen Halbachse. Die Bahnparameter sind dieselben wie in
Fig. (5.15).

Die Größen H10 und H20 bedeuten die Perigäumshöhe und die Apo-
gäumshöhe zu Beginn der Beobachtung. Die obige Beziehung setzen
wir nun in (5.150) ein und erhalten nach Integration für H1[t] die neue
Darstellung

(5.153)H1[t] ∼ H10 + 1
4 HS ln

[
1 − t

TL

]
.

Wie bei einer reinen Kreisbahn erhalten wir wieder einen analogen zeitli-
chen Verfall für die Perigäumshöhe, nur ist jetzt die Skalenhöhe asym-
ptotisch auf den vierten Teil reduziert. Dagegen gilt für den zeitlichen
Verfall der Apogäumshöhe mit (5.152) und (5.153)

(5.154)H2[t] −H1[t] = (H20 −H10)
√

1 − t

TL
.
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Fig. 5.17: Der Absturz von Progress M-27M im April/Mai 2015 nach einer
Fehlfunktion der Trägerrakete. Die Funktionen (5.153) und (5.154) beschrei-
ben die beobachtete Höhenabnahme sehr gut.

Die Lebensdauer TL muss jetzt aus den gekoppelten Differentialgleichun-
gen (5.147) und (5.148) gewonnen werden. Alternativ ist es auch möglich,
aus den abnehmenden Höhendaten des Perigäums und Apogäums durch
einen Fit die zwei freien Parameter HS und TL in (5.153) und (5.154) zu
bestimmen.

In der Figur (5.18) ist der sehr schnelle Zerfall der Bahn des ersten
Satelliten Sputnik 1 mit der Zeit zu sehen. Historisch ist noch interessant,
dass man im Oktober 1957 nur die Umlaufzeit des Satelliten genau messen
konnte.5 Für die Umlaufzeit eines künstlichen Satelliten um die Erde gilt
nämlich mit Berücksichtigung der Abnahme der Gravitation mit dem

5Dies wurde insbesondere an der Bonner Sternwarte 1957 durch P. Lengrüßer,
H.G. Bennewitz und W. Priester durchgeführt.
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Fig. 5.18: Der dramatische Bahnzerfall von Sputnik 1 vom 4. Oktober 1957
bis zum 4. Januar 1958, dem Tag des Verglühens in der Erdatmosphäre.
Berechnet mit den Funktionen (5.153) und (5.154).

Abstand vom Massenzentrum nach Kepler oder Newton

TU = 2π

√
R

g

(
1 + 3

2 δ + 3
8 δ

2 + . . .

)
(5.155)

mit δ = (H1 + H2)/(2R). Aus einer gemessenen Umlaufzeit und einer
vom Kosmodrom Baikonur in der damaligen UDSSR angegebenen Apo-
gäumshöhe konnte man damals schnell auf eine mittlere Bahnhöhe von
576 km schließen.
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5.7 Theorie der Kármán-Linie
Im letzten Kapitel wurde schon angedeutet, dass ein Satellit in einer
erdnahen Kreisbahn durch Luftreibung zwar an Höhe verliert, gleichzeitig
aber an Geschwindigkeit gewinnt. Es muss aber eine kritische Höhe ge-
ben, bei der mit zunehmender Luftreibung die Gesamtgeschwindigkeit ein
Maximum erreicht. Die Phase maximaler Abbremsung und Energiedissi-
pation findet allerdings erst in wesentlich tieferen Atmosphärenschichten
statt, wie man anhand der Gleichung (5.74) sehen konnte. Wir wollen hier
zunächst diese wichtige kritische Höhe HK maximaler Orbitalgeschwin-
digkeit genauer verstehen und analytisch abschätzen. Der ganze Vorgang
entspricht zudem einem ballistischen Wiedereintritt mit Eintrittswinkel
Θ ∼ 0. Letztendlich bestimmt diese kritische Höhe die obere Grenze der
Erdatmosphäre zum Weltraum.

Modell I : Zunächst benutzen wir einen konsistenten störungstheoreti-
schen Ansatz. Dazu formulieren wir die Bewegungsgleichung (5.129) in
Polarkoordinaten. Es gilt für die Radialkomponente

(5.156)..
r = −GM

r2 + r
.
φ2 − k[r] .

r
√.
r2 + r2 .

φ2

sowie für die Azimutalkomponente

(5.157)r
..
φ+

{
2 .
r + k[r] r

√.
r2 + r2 .

φ2
} .
φ = 0.

Wie in der klassischen Ballistik ist es auch hier günstig, die Geschwindig-
keitskomponenten vr und vt gemäß

vr = .
r; vt = r

.
φ (5.158)

einzuführen. Die beiden obigen Bewegungsgleichungen lauten

(5.159).
vr + GM

r2 − v2
t

r
+ k[r]

√
v2

r + v2
t vr = 0

und
(5.160).

vt + vr vt

r
+ k[r]

√
v2

r + v2
t vt = 0.

Zu beachten ist hier, dass der Faktor 2 in (5.157) in der Gleichung (5.160)
vor dem Term vr vt/r nicht mehr auftritt. Beim spiralförmigen Abstieg
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wird zu Beginn sicherlich vr ≪ vt gelten. Da die Bahn monoton abfallend
ist, können wir analog wie im Allen - Eggers Modell die Ableitung nach
der Zeit durch die Ableitung nach dem Radius r ersetzen. Mit den
Abkürzungen

v =
√
v2

r + v2
t

und
(5.161)d

dt
= vr

d

dr

folgen so die Differentialgleichungen (vr ≪ vt)

(5.162)vr
dvr

dr
+ GM

r2 − v2
t

r
+ k e(R−r)/HS v vr = 0

und
(5.163)vr

dvt

dr
+ vr vt

r
+ k e(R−r)/HS v vt = 0.

Hier muss betont werden, dass ab jetzt r eine radiale Polarkoordinate
darstellt und nicht mehr den zeitlich veränderlichen Ortsradius eines
Flugkörpers bezeichnet. Die Gleichungen haben jetzt den Charakter von
hydrodynamischen Feldgleichungen für das Geschwindigkeitsfeld vr, vt.

Wir lösen diese beiden gekoppelten Gleichungen mit einer Störentwick-
lung der Form

vr = k f1[r] + k3 f3[r] + . . . ;

vt =
√
GM

r
+ k2 f2[r] + k4 f4[r] + . . .

Wir nehmen dabei an, dass in (5.163) im asymptotischen Limes r → ∞
für vt die Lösung

√
GM/r gilt. Wir erhalten bis zur dritten Ordnung die

Störfunktionen

f1[r] = −2
√
GM r1/2 e(R−r)/HS ,

f2[r] = −2
√
GM r3/2 e2(R−r)/HS

r

HS
,

f3[r] = −4
√
GM r5/2 e3(R−r)/HS

(
1 + 5 r

HS
− 4 r2

H2
S

)
.
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In erster Ordnung k erhalten wir so für die radiale Driftgeschwindigkeit

vr = −2 k
√
GM r1/2 e(R−r)/HS ,

ein Ergebnis, wie wir es schon früher (5.137) durch eine energetische
Betrachtung gewonnen hatten. Für die tangentiale Geschwindigkeit vt

ergibt sich analog in zweiter Ordnung in k

(5.164)vt =
√
GM

r

(
1 − 2 k2 H2

S

(
r

HS

)3

exp
[
2 R− r

HS

]
+ . . .

)
.

Die Abnahme der tangentialen Geschwindigkeit ist somit ein Effekt
zweiter Ordnung in k. Das Quadrat der Gesamtgeschwindigkeit v2 ergibt
sich in dieser Näherung identisch mit v2

t . Diese Störungsentwicklung ist
aber nur semikonvergent. Man kann aber zumindest über die analytische
Form des Maximums eine Aussage machen. Differenzieren wir vt nach
r und setzten die Ableitung Null, so erhalten wir für die kritische Höhe
r ≡ rK maximaler Geschwindigkeit die Gleichung

(5.165)HS =
√

8 k r2
K exp

[
R− rK

HS

]
.

Auflösen nach r führt mit der Lambertschen Funktion mit dem Zweig
W−1 auf den Ausdruck

(5.166)rK = −2HS W−1

−2−7/4

√
eR/HS

kHS


Aus der obigen Formel folgt mit einer asymptotischen Formel der Lam-
bertschen Funktion, dass die kritische Höhe maximaler Geschwindigkeit
recht gut die halb-empirische Formel

(5.167)HK ≈ 2HS ln
[
R

HS

]
+HS ln [cK kHS ]

dargestellt wird. Der numerische Parameter liegt bei etwa cK ∼ 0.795.
Ausgedehnte Computersimulationen mit den Gleichungen (5.162) und
(5.163) zeigen, dass die obige Formel (5.167) mit den numerischen Werten
recht gut übereinstimmt. Wie man sieht, hängt die kritische Höhe HK
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Fig. 5.19: Vergleich von numerischen Simulationen (Markierungen) mit
der analytischen Formel (5.167) für die kritische Höhe HK , bei der die
Orbitalgeschwindigkeit eines Satelliten bei einer kreisförmigen Bahn maximal
wird. Die obere Kurve entspricht HS = 7 km und die untere HS = 8 km. Für
den Erdradius wurde dabei R = 6371 km genommen.

nur vom ballistischen Parameter k, dem Erdradius R und der Skalenhöhe
HS der Atmosphäre ab. Die Formel erinnert an das Allen-Eggers
Modell. Der Hauptteil der obigen Formel, der nicht vom ballistischen
Koeffizienten k abhängt, ist mit R = 6371 km und HS = 8 km von der
Größenordnung

(5.168)2HS ln
[
R

HS

]
∼ 107 km (Erde).

In dieser Höhe, die hier nur vom Radius R des Planeten und der Ska-
lenhöhe HS seiner Atmosphäre abhängt, befindet sich die sogenannte
Kármán-Linie, die in den 1950er Jahren als gedachte Grenze der oberen
Erdatmosphäre von der Fédération Aéronautique Internationale nach
einem Vorschlag von T. v. Kármán bei 100 km festgelegt wurde6. Die

6Theodore von Kármán (1881 - 1963) war ein ungarisch-amerikanischer Physiker
und Luftfahrttechniker. Er gilt als Pionier der modernen Aerodynamik und der
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Abschätzung für die Marsatmosphäre liefert übrigens bei der Kármán-
Linie mit R = 3390 km und HS = 11 km den überraschend hohen
Wert

(5.169)2HS ln
[
R

HS

]
∼ 126 km (Mars).

Multiplizieren wir schließlich (5.162) mit vr, (5.163) mit vt und addieren
beide Gleichungen, so erhalten wir mit v2 = v2

r + v2
t

(5.170)vr
d |v|
dr

+ GM

r2 vr + k[r] |v|3 = 0.

Am Abstiegspunkt maximaler Geschwindigkeit gilt dann die spezifische
Energiebilanz

(5.171)GM

r2
K

vr + k[rK ] |v|3 = 0.

Am Umkehrpunkt ist also die zeitliche Abnahme der spezifischen Gravita-
tionsenergie gleich dem dissipativen Energieverlust durch Luftreibung. Die
radiale Sinkgeschwindigkeit ist dann auf den halben theoretischen Wert
von (5.137) gesunken. Die gleiche Bilanz gilt später bei einer konstanten
Sinkgeschwindigkeit von

√
g/k auch in den unteren Atmosphärenschich-

ten .

Modell II : Alternativ könnte man die kritische Höhe HK , unterhalb
derer der Luftozean der Erde aerodynamisch wirksam wird, auch mit der
Gleichung (5.12) genähert abschätzen. Denn für den Geschwindigkeits-
verlauf gilt bei Vernachlässigung der Höhenabhängigkeit von g

(5.172)v
.
v = −kD exp[−y/HS ] v3 − g

.
y.

Eliminieren wir wieder mit der Kettenregel die Zeitableitung durch eine
Ableitung nach y, so gilt im Falle sehr kleiner θ

(5.173)v
dv

dy
= −kD v2 e

−y/HS

θ
− g.

Luftfahrt- und Raketenforschung. In der Liste der damaligen Kommission tauchen
auch Namen wie W. von Braun, E. Eula, V.N. Sokolsky, B. Genty und R.B.
Dillaway auf.
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Dies wäre die idealisierte Modellgleichung für die Geschwindigkeitsän-
derung beim spiralförmigen ballistischen Abstieg einer Raumkapsel aus
einer Erdumlaufbahn. Die Abnahme der Gravitation mit der Höhe spielt
hier nur eine untergeordnete Rolle. Aus der Forderung dv/dy ≡ 0 folgt
die notwendige und hinreichende Bedingung für die kritische Höhe HK

(5.174)g θK = −kD v2 e
− HK

HS ,

welche mit der Bedingung (5.171) äquivalent ist. Um diese Bedingung
weiter auszuwerten, benutzen wir die Funktion Y von Yaroshevsky.
Mit (5.57,5.65) und (5.66) erhalten wir so die transzendente Gleichung

(5.175)HS

R
Y′[ζK ] = e−2 ζK Y[ζK ]

für die kritische Zahl ζK . Ist diese bekannt, so folgt die kritische Höhe
nach (5.67) zu

(5.176)HK = 1
2 HS ln

[
R

HS

]
+HS ln

[
kDHS

Y[ζK ]

]
.

Mit der ausreichenden Näherung (5.68) folgt aus der obigen transzenden-
ten Gleichung

ζK ≈ 3
2
HS

R
, Y[ζK ] ≈ 3

(
HS

R

)3/2
.

Damit erhalten wir mit (5.176) für die kritische Höhe der Kármánlinie
wieder den Ausdruck

(5.177)HK = 2HS ln
[
R

HS

]
+HS ln

[
1
3 kD HS

]
.

Wie man im Vergleich mit (5.167) sieht, wird der erste Term im vollem
Umfang bestätigt, während der zweite einen etwas zu kleinen Parameter
ck ∼ 1/3 aufweist.
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Fig. 5.20: Das heftige Aufglühen und explosive Verdampfen des Riesenboliden
am 15. Februar 2013 über dem Südural, gefilmt mit einer Autokamera in
Kamensk - Uralski, etwa 200 km nördlich von Tscheljabinsk. Ein etwa zehnfach
an Masse größerer Superbolide in einer steileren Bahn war wahrscheinlich
die Ursache für das Tunguska - Ereigniss am 30. Juni 1908 in Sibirien in
der Nähe des Flusses „Steinige Tunguska“ (Podkamennaja Tunguska) in der
heutigen Region Krasnojarsk. (credit: Aleksandr Ivanov; wikimedia.commons)

5.8 Das Tscheljabinsk und Tunguska Ereignis
Die Ergebnisse des vorhergehenden Kapitels lassen sich auf ein Natur-
phänomen anwenden, welches am 15. Februar im Südural zu beobachten
war: Das Eindringen eines Riesenboliden in die Erdatmosphäre und sein
explosives Verglühen. Neben der Dynamik spielt nämlich auch noch die
Energiedissipation bei der Abbremsung eine wichtige Rolle. Dieser Vor-
gang führt sofort zu einer starken Erhitzung des Körpers und kann ihn
unter Umständen zerstören oder auflösen. Dies konnte man sehr schön
beim Eintauchen eines „Riesenboliden“ am 15. Februar 2013 im Südural
bei der Millionenstadt Tscheljabinsk beobachten. Es gilt

.
E = −kme−y/HS v[t]3. (5.178)

Durch Ersetzen von v[t] → v[y] folgt im Falle kHS ≪ 1

(5.179)
.
E = −kmv3

0 exp
[
−3 kHS

sin[Θ] e
−y/HS − y/HS

]
.
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Der Betrag dieser Energiedissipation wird gemäß dieser Beziehung maxi-
mal in der Höhe

(5.180)yE = HS ln
[

3 kHS

sin[Θ]

]

Die Höhenregion maximaler Energiedissipation liegt immer oberhalb der
Region maximaler Abbremsung, wie man durch Vergleich mit (5.31)
feststellen kann. Die Eintrittsgeschwindigkeit ist dann erst auf den Wert
(kHS ≪ 1)

vE = v0 e
−1/3 ≈ 0.72 v0 (5.181)

gesunken. Letztendlich erklärt dieses Ergebnis, dass große Boliden (Me-
teore), die in die oberen Atmosphärenschichten eintauchen, zunächst hell
aufleuchten und erst dann durch starke mechanische Beanspruchung (Ab-
bremsung) zerbrechen. Die maximale Energiedissipation beträgt (Θ < 0)

(5.182)
.
Emax = mv3

0
3 eHS

sin[Θ]

und ist wieder unabhängig vom ballistischen Koeffizienten k. Wir können
die obige Formel benutzen, um die Energieleistung des Tscheljabinsk -
Boliden abzuschätzen. Wir entnehmen aus der Literatur (Internet) die
Daten7

m ≈ 107 kg; v0 ≈ 2.0 · 104 m/s (5.183)
sowie

Θ ≈ 18◦; HS ≈ 8 · 103 m. (5.184)
Für die kinetische Energie ergibt sich so zunächst der Wert

Ekin ≈ 2.0 · 1015 [J ]. (5.185)

Mit dem TNT-Äquivalent von 1 kg [TNT ] = 4.184 · 106 [J] oder 1 [kT ] ≡
4.184 · 1012 [J] entspricht dies aufgerundet dem Wert

Ekin ≈ 500 [kT ] (Kilotonnen TNT ) (5.186)

Die maximale Energieproduktion (Energieleistung) des Riesenmeteores
7Der „steinige“ Riesenbolide von Tunguska soll zehnfache Masse, einen Eintauchwin-

kel von etwa Θ ∼ 45◦ und eine Airburst - Höhe von zirka 5 − 10 km gehabt haben
([13]).
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Fig. 5.22: Die Energieleistung des Riesenboliden am 15. Februar 2013
über dem Südural in Einheiten von Terra-Watt als Funktion der Höhe y
(siehe 5.179). Der effektive ballistische Koeffizient keff wurde aufgrund der
Beobachtungen bestimmt, nach denen bei der Höhe y ≡ 30 km ein Maximum
der Helligkeit festgestellt wurde.

betrug

|
.
E| ≈ 3.0 · 1014 [W ]

≈ 300 [TW ] (5.187)

Dies entspricht etwa dem 5-fachen der Leistung, welche die Erde als Wär-
me aus Erdmantel und Erdkern ständig abgibt. Oder es entspricht über
dem 10-fachen, welches die gesamte technische Zivilisation permanent an
Leistung benötigt.

Um den Verlauf in der Fig. (5.22) zu erhalten, muss der effektive
ballistische Koeffizient keff im hypersonischen Bereich bekannt sein.
Dies geschah mit der Formel (5.180) mit der Information, daß in einer
Höhe von etwa 30 km die größte Helligkeit (Lichtblitz) und somit höchste
Energieumwandlung stattfand. Die Abschätzung liefert

keff ≈ 5.5 · 10−4 [m−1] (5.188)

Mit der Abschätzung

keff ≈ 3
4 cw

ϱL

ϱCh

1
Deff

(5.189)
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Fig. 5.23: Das obere Bild zeigt den zeitlichen Verlauf der Energiedissipation
des Boliden von Tscheljabinsk um den „Airburst“ Zeitmoment t = 0. Berech-
net mit den Formeln (5.179) und (5.193). Das untere Bild wurde mit der
genäherten „Glockenkurve“ (5.194) berechnet.

für kugelförmige Körper ergibt sich mit der Luftdichte ϱL = 1.21 kg/m3,
mit der Dichte für Chondrite von ϱCh = 3300 kg/m3 und cw(M,Re) ≈ 2
ein grober Durchmesser von etwa

Deff ≈ 1.0m (5.190)

Der Bolide muss also während des Airbursts („Luftexplosion“) in 30
km Höhe schon in zahlreiche Brocken im Meterbereich zerfallen sein -
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damit die obigen dynamischen Formeln konsistent sind. Das durch die
Hitze induzierte Zerplatzen des Körpers erhöht auch schlagartig den
ballistischen Koeffizienten. Denn zerfällt der Bolide in N etwa gleich
große Teile, so erhöht sich dieser Koeffizient für jedes Teilstück in

keff ∼ k0 N
1/3. (5.191)

Es bleibt noch das Problem, den zeitlichen Verlauf des Wiedereintritts
mit der Energieproduktion zu verknüpfen. Wegen (5.29) gilt

(5.192).
y[t] = −v0 sin[Θ] exp

[
−kHS e

−y[t]/HS

sin[Θ]

]
.

Durch Integration und Eichung der Zeitskala bei y = yE zu t[yE ] = 0
ergibt sich

(5.193)t[y] = HS

v0 sin[Θ]

{
Ei
[
−kHS e

−y/HS

sin[Θ]

]
− Ei

[
1
3

]}
Die Funktion Ei[z] bezeichnet wieder das Exponentialintegral. In der
Umgebung von y = yE können wir durch eine Taylorentwicklung in
den beiden Formeln (5.179) und (5.193) die Höhe y in erster Ordnung
eliminieren und erhalten so in guter Näherung

(5.194)dE
dt

∼ mv3
0 sin[Θ]

3 eHS
exp

[
−v2

0 sin[Θ]2

2 e2/3 H2
S

t2
]

Hier sieht man sehr schön, daß nicht nur das Maximum, sondern auch
der zeitliche Verlauf um das Maximum der Energieleistung in sehr guter
Näherung unabhängig von dem ballistischen Koeffizienten k ist. Ein
Vergleich der Figuren in (5.23) zeigt zudem, daß die Funktion (5.194)
eine ausreichende zeitliche Beschreibung der Energieumwandlung liefert.

Mit den Ergebnissen wird man eigentlich unmittelbar zu einem noch
gößerem Phänomen geführt, dass sich am 30. Juni 1908 im fernen Sibirien
zugetragen hat. Dort müssen eine oder mehrere gewaltige Explosionen
stattgefunden haben, die auf einer Fläche von 2000 Quadratkilometern
circa 60 Millionen Bäume wie Streichhölzer umgeworfen haben. Nur in
einem zentralen Gebiet blieben die Bäume wie Telegrafenmasten stehen,
aber all ihrer Äste beraubt. Die wahrscheinlichste Deutung ist hier wohl
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das Eindringen eines Steinmeteoriten beträchtlicher Größe in die Erdat-
mosphäre. Dabei wurde die Luft und der Bolide extrem großen Drücken
und Temperaturen ausgesetzt, die schließlich zu seinem Zerbrechen und
explosivem Verdampfen führte. Der Eintrittswinkel war wahrscheinlich
steiler als bei dem Tscheljabinsk Boliden und die „Luftexplosion“ fand
wohl nur in 5-10 km Höhe statt.

In der Hydrodynamik gibt es ein einfaches Modell, welches die Ausbrei-
tung der äußeren Hülle einer kugelförmigen adiabatischen Schockwelle
beschreibt. Das Expansionsgesetz für den Radius R[t] lautet

(5.195)R[t] =
(

E0 t
2

κ[γ] ϱ0

)1/5

.

Die Größe E0 ist die Energie, die bei der Explosion freigesetzt wird,
ϱ0 die Dichte der ungestörten Atmosphäre und t die Zeit, die nach der
Explosion verstrichen ist. Das Gesetz wurde in den 1940er Jahren von J.
von Neumann (1903-1957), L. I. Seldov (1907-1999) und G.I. Taylor
(1886-1975) hergeleitet und diskutiert. Die Konstante κ ist vom Adiaba-
tenindex γ abhängig. Für diese Zahl gibt es eine Integraldarstellung, die
durch drei Appellsche F1 Funktionen gelöst werden kann. Für γ = 7/5
(trockene Luft) erhält man κ[7/5] = 0.85107185....

Wird die obige Gleichung nach t differenziert, so folgt aus beiden
Beziehungen die Relation

(5.196)
.
R[t] = 2

5

√
E0

κ[γ] ϱ0 R3 .

Damit läßt sich die Ausbreitungsgeschwindigkeit
.
R der Stoßwelle mit

der Entfernung R vom Explosionszentrum sehr einfach abschätzen. Das
Dichteverhältnis direkt hinter der Schockwelle verhält sich zur ungestörten
Dichte vor der Schockwelle nach den Hugoniot-Bedingungen wie

(5.197)ϱ

ϱ0
= γ + 1
γ − 1 .

Die Verdichtung beträgt für γ = 7/5 bei sechs.
Nach der Grafik (5.24) ist es wahrscheinlich, dass die Energie der

Tunguska-Explosion sicherlich bei 8 oder Megatonnen TNT gelegen haben
muss. Denn nur so läßt sich das Zerbersten von Fensterscheiben in 60 km
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Fig. 5.24: Ein einfaches Modell zur Abschätzung der Windgeschwindigkeiten
während des kurzen „Schockes“ nach einer „Punktexplosion“ ist die point
source solution einer homogenen Atmosphäre ohne Gravitationsbeschleunigung
und Dichteabnahme längs der Höhe.

Entfernung vom Epizentrum erklären. Es gab wohl mehrere Explosionen
und auch die Hitze muss noch in 50 km Entfernung erheblich gewesen
sein. Die im Epizentrum von oben kommende heiß - verdichtete Stoßwelle
kann so auch die Existenz von „Telegrafenmasten“ (stehengebliebene
Baumstämme ohne Äste) erklären, welche weiter außen bis 20 km Radius
von einem fast radialsymmetrischen Muster umgeworfener Baumstämme
umsäumt ist oder war.

5.9 Ein fly by Modell
Wir wollen mit Hilfe eines modifizierten Allen-Eggers Modelles die
Geschwindigkeitsänderung eines Boliden abschätzen, der in einer geraden
Bahn die Oberfläche eines Planeten in der nächsten Annäherung HP

streift. Bekannt ist hier der Bolide vom 10. August 1972 über dem
Bundesstaat Utah, der bei Tageslicht sichtbar war und bis auf etwa
53 km Höhe in die Erdatmosphäre eindrang und anschließend wieder
verschwand. Die Situation ist in Fig. (5.25) dargestellt. Die wichtigste
Krafteinwirkung ist hier wieder die Luftreibung; die Gravitation ist bei
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Fig. 5.25: Ein einfaches Modell zur Abschätzung der Abbremsung eines
Boliden beim Vorbeiflug durch die oberen Atmosphärenschichten eines Pla-
neten („Earth-grazing fireball“). Der Einfluss der Gravitation wird dabei
vernachlässigt. Aus jüngster Zeit ist hier der Feuerball „Grand-Teton-Meteor“
aus dem Jahre 1972 bekannt geworden.

einer hohen Eintrittsgeschwindigkeit nur von sekundärer Bedeutung. Die
entscheidende Differentialgleichung ist wieder (5.24). Hier lautet sie jetzt

dv

dx

dx

dt
+ k e−y/HS v2 = 0. (5.198)

Die Koordinate x wird längs der zurückgelegten Bahn gemessen, wobei
x = 0 der Punkt der nächsten Annäherung in der Höhe HP über der
Planetenoberfläche bezeichnet. Wegen v = dx/dt vereinfacht sich die
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obige Gleichung in

dv

dx
+ k e−y/HS v = 0. (5.199)

Um diese Gleichung zu integrieren, benötigen wir noch die Beziehung zwi-
schen der Höhe y über Grund und der Bahnposition x. Nach Pythagoras
gilt

(R+HP )2 + x2 = (R+ y)2. (5.200)

Auflösen nach y führt auf den Zweig

(5.201)y = −R+
√

(R+HP )2 + x2.

Eingesetzt in die obige Gleichung führt auf die Differentialgleichung

d ln[v]
dx

+ k exp
[
R−

√
(R+HP )2 + x2

HS

]
= 0. (5.202)

Die Gleichung ist integrabel und führt, wenn wir für die Geschwindigkeit
am niedrigsten Punkt HP der Flugbahn den Wert v[0] = vP ansetzen,
zu der Lösung

(5.203)ln
[
v

vP

]
= −k e

R
HS

∫ x

0
exp

[
−
√

(R+HP )2 + t2

HS

]
dt

Im Falle x → +∞ (Austrittsgeschwindigkeit) und x → −∞ (Eintrittsge-
schwindigkeit) läßt sich das obige Integral auf eine modifizierte Besselfunk-
tion K1[z] zurückführen. Für die Eintritts - und Austrittsgeschwindigkeit
erhalten wir so die Ausdrücke

ln
[
v[−∞]
vP

]
= +k e

R
HS (R+HP ) K1

[
R+HP

HS

]
ln
[
v[+∞]
vP

]
= −k e

R
HS (R+HP ) K1

[
R+HP

HS

]
.

Mit den Ergebnissen können wir eine erste Frage beantworten: Mit wel-
cher Geschwindigkeit muss ein Bolide in die höhere Atmosphäre eintau-
chen, um wieder mit der Entweichgeschwindigkeit dieselbe zu verlassen?.
Die Entweichgeschwindigkeit setzen wir mit dem Ausdruck

√
2 g R an.
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Fig. 5.26: Ein „Earth-grazing“ Bolide vom 20. Juli 1860, festgehalten in
einem Gemälde des amerikanischen Landschaftsmalers F.E. Church (1826-
1900). Die leicht gebogene Flugbahn muss wohl der künstlerischen Freiheit
des Malers zuzuschreiben sein.

Bezeichnen wir die Eintrittsgeschwindigkeit mit v0, so haben wir mit
der asymptotischen Formel für modifizierte Besselfunktionen die beiden
Grenzbedingungen in der Genauigkeit HS/R

v0 = vP exp
[
+
√
π

2 k e
− HP

HS

√
HS (R+HP )

]
,

√
2 g R = vP exp

[
−
√
π

2 k e
− HP

HS

√
HS (R+HP )

]
.

Durch Elimination von vP ergibt sich asymptotisch genau

(5.204)v0√
2 g R

= exp
[√

2π k e− HP
HS

√
HS (R+HP )

]
.

Diese Formel bestimmt für v0 eine untere Grenze für die notwendige
Eintrittgeschwindigkeit eines „Earth-grazing“ Boliden als Funktion der
Oberflächenbeschleunigung g, dem Erdradius R, der Skalenhöhe HS der
Atmosphäre und dem nächsten Annäherungspunkt der Bahn in der Höhe
HP . Es ist natürlich klar, dass v0 >

√
2 gR sein muss.

185



In ähnlicher Weise kann das Modell auch die Frage beantworten, bei
welche kritischen Höhe HP eine Raumkapsel auf die Kreisbahngeschwin-
digkeit

√
g R abgebremst wird, wenn diese mit der Geschwindigkeit

√
2 g R

in die Atmosphäre eintritt. In diesem Fall ist vP =
√
g R und man erhält

die Bedingung

(5.205)
√

2 = exp
[√

π

2 k e
− HP

HS

√
HS (R+HP )

]
.

Durch Auflösen nach HP ergibt sich

(5.206)HP = −R− 1
2 HS W−1

[
−e−2R/HS ln[2]2

π k2H2
S

]
.

W−1[z] bezeichnet hier den unteren Zweig der Lambertschen W[z] -
Funktion (siehe Anhang). Eine asymptotische Entwicklung dieser Funk-
tion für extrem kleine negative Argumente führt bis auf Glieder der
Ordnung HS/R zu der Darstellung

(5.207)HP = 1
2 HS ln

[
R

HS

]
+HS ln

[√
2π kHS

ln[2]

]

Der erste Anteil dieser Abschätzung beschreibt eine von k ≡ kD unab-
hängige Höhe, die mit HS = 8 km und R = 6371 km bei etwa 27 km
liegt. Im nächsten Kapitel werden wir diese Relation unter Einbeziehung
der Gravitation präzisieren.
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6 Raketenballistik
Schon um das 1045 kennt man in China das Prinzip, mit Pulver Lanzen
des Feuers auf Gegner zu schießen. Auch in Indien sind zu dieser Zeit
Raketen bekannt. Nach Europa gelangen sie spätestens 1379, wo sie in
Italien und auch Rumänien bei kriegerischen Auseinandersetzungen gegen
osmanische Einfälle zum Einsatz kamen. Berühmt für seine „Raketen Ar-
tillerie Brigaden“ war aber der indische Tipu Sultan (Tiger von Mysore)
(1750-1799), der seine metallischen Feuerlanzen zum Teil erfolgreich im
Kampf gegen die britische Ostindienkompanie einsetzte. Die eigentliche
wissenschaftliche Erforschung begann dann in England und Russland zu
Beginn des 19ten Jahrhunderts. Der britische Offizier und 2nd Baronet
W. Congreve (1772-1828) konnte unzerstörte Modelle der indischen
Metall-Raketen nach England bringen und sie dort zu 32 Pfund Raketen
mit Reichweiten von bis zu 3000 Metern weiter entwickeln. Congreve
war bei der britischen Bombardierung von Copenhagen 1807 anwesend
und konnte sich von der terrorisierenden Feuerwirkung der Raketen an
Gebäuden überzeugen. Auch bei der Völkerschlacht von Leipzig 1813
kamen Congreve Raketen unter der Leitung von Captain R. Bogue
(1782-1813) zum Einsatz.

Der heute wenig bekannte britische Mathematiker W. Moore (fl.c.
(floruit circa) 1806-1823) brachte im Jahre 1813 das Buch Treatise of
the Motion of Rockets heraus, in dem er zum erstenmal die sogenannte
Raketengleichung aufstellte. Er versuchte, die allgemeine Bewegung durch
Reihenentwicklungen zu meistern. ([36],[37]). Moore war wohl zeitweise
Mitarbeiter in der Raketengruppe um Congreve und entwickelte wie
später der russische Artillerieleutnant K. Konstantinov (1817-1871)
1844 eine Vorrichtung, um die Geschwindigkeit eines Raketenkörpers
an jedem Punkt seiner Bahn zu vermessen. Gleichzeitig erfand er ein
ballistisches „Raketenpendel“, um die Impulsänderungen während des
Abbrennens der Rakete zu untersuchen. Zuvor hatte schon im kaiserlichen
Russland der spätere Generalleutnant der Artillerie A. D. Sassjadko
(1779- 1837) nach den Napoleonischen Kriegen mit neuartigen Raketen
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experimentiert. Im Russisch-Türkischen Krieg 1828/1829 bildete er die
erste Raketenbatterie der russischen Arme. Einen Höhepunkt in Russland
bildeten dann die theoretischen Arbeiten von K. E. Ziolkowski (1857-
1935), der zu den eigentlichen Wegbereitern der Raumfahrt gezählt werde
kann.

Im Jahre 1844 meldete in England der Erfinder W. Hale (1797-1870)
ein Patent an, welche die Congreve-Rakete mit ihrem langen Holzstab
durch eine stablose schnell rotierende Rakete ersetzen sollte. Diese durch
Rotation sich stabilisierende Rakete konnte einfacher und sicherer her-
gestellt werden und hatte Reichweiten bis zu 4000 Metern. Doch die
klassische Artillerie verbesserte sich Mitte des 19ten Jahrhunderts und
die eigentliche Entwicklung der modernen Raketentechnik fand dann erst
zu Beginn des 20sten Jahrhunderts statt. Die Hale-Rakete spielte aber in
den britischen Kolonialkriegen bis 1919 eine nicht unbedeutende Rolle.

Historisch ist weiterhin sehr bemerkenswert, dass nach der Bombar-
dierung Kopenhagens im Jahre 1807 durch die britische Flotte sich der
Leutnant A. F. Schumacher (1782-1823), der jüngere Bruder des Astro-
nomen H. C. Schumacher (1780-1850), einen Blindgänger der Congreve
- Raketen nahm und sich entschloss, auf der dänischen Insel Hjelm 1816
eine vom dänischen König unterstützte eigene geheime Raketenforschungs-
station einzurichten, die noch nach seinem Tode bis 1834 als Elitegruppe
bestand hatte. Außerdem fasste die Königliche Akademie zu Kopenhagen,
wohl unter dem Eindruck des Raketenangriffs von 1807, den Entschluss,
ein Preisausschreiben zum Thema Congreve-Raketen auszustellen. Dort
hieß es für das Fach Mathematik im Jahre 18101

A body which has the form and the figure of a cylinder, such as Congre-
ve’s rockets, is projected at a certain elevation or angle with the horizon,
and is continually impelled by the flames which iusse from it. The sub-
stance which feeds the fire is gradually consumed, and the weight of the
body diminished.

This being the case,

1.) What is the curve desribed by that body?

2.) If the inflammable matter contained by the cylinder burns
in such a manner that the inflamed strata are neither par-

1Philosophical Magazine, Band 36, p.232, 1810
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Fig. 6.1: Vom 2. - 4. September 1807 bombardierte (terrorisierte) die briti-
sche Admiralität während der Napoleonischen Kontinentalsperre die Stadt Ko-
penhagen. Zum Einsatz kamen damals etwa 300 neuartige Congreve-Raketen,
welche der britische Offizier William Congreve auf Grundlage der indischen
Raketen des Tipu Sultan (Tiger von Mysore) (1750-1799) weiterentwickelt
hatte. (Bild: C.W. Eckersberg (1783-1853))

allel to each other, nor perpendicular to the axis, to what
perturbations will the rocket be subject?

3.) As it is necessary that the cylinder be performed and
hollowed, so as to afford the flame a greater surface, and
to increase the force of the flame that issues from it, it is

189



required to know what form or figure is most advantsgeous for
the excavation?

The society wishes that attention be paid, if possible, to the resistance and
pressure of the air; but yet the prize will be adjudged to the best answer
to the above three questions.

Nicht nur wird hier nach der Bahnkurve gefragt, sondern auch nach
detaillierten technischen Details des vorteilhaftesten Raketenkörpers.
Selbst Stabilitätsfragen der Rakete werden hier angesprochen. Ein für
seine Zeit (um 1810) ein extrem ungewöhnliches Preisausschreiben. Fragen
der Flugstabilität treten heutzutage besonders im Sport bezüglich des
Anstellwinkels beim Speerwurf auf. Seit 1986 wurde der Schwerpunkt
gegenüber dem Druckpunkt, wo die aerodynamischen Kräfte angreifen,
mehrere Zentimeter nach vorne verschoben. Die heutigen Speere sind
daher eher „ballistisch“, während früher die Speere eher „aerodynamisch“
waren, weil die Längsachse gegenüber der momentanen Bahntangente eine
stärkere Abweichung aufwies und so ein größerer Auftrieb erzeugt wurde.
Bei einer Rakete könnte aber ein von Null verschiedener Anstellwinkel
(„angle of attack“) dazu führen, dass die aerodynamischen Kräfte die
Rakete in Rotation versetzt, was allerdings bei den indischen Raketen
des Tipu Sultan Ende des 18ten Jahrhunderts mit ihrem Bambusstab
und Metalllanzen erwünscht war.

6.1 Die Kopenhagener Preisaufgabe von 1810
Bevor wir die Dynamik einer Rakete vom vertikalen Start bis zu den
extrem hohen Horizontal-Geschwindigkeiten in eine Erdumlaufbahn be-
trachten, soll zunächst der oben erwähnte erste Punkt des Kopenhagener
Preisausschreibens von 1810 über die Bahnkurve und Dynamik einer
erdnahen Rakete genauer untersucht werden. In der bodennahen Raketen-
ballistik spielen drei Kräfte eine Rolle: 1) Impulsänderung durch Rückstoß,
2) Luftwiderstand, und 3) Gravitation. Einschließlich Gravitation lautet
die Bewegungsgleichung mit dem Geschwindigkeitsvektor v = ( .

x,
.
y)

(6.1).v + kD v v + cg

.
m

m

v
v

+ g = 0,

wo cg die Ausströmgeschwindigkeit der Gase und m → m[t] die durch
das Abbrennen des Treibstoffes zeitlich abnehmende Masse der Rakete
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bezeichnet. Der ballistische Koeffizient kD ist natürlich von der Höhe y
der Rakete in der Atmosphäre abhängig, was hier aber vernachlässigt
werden soll. Eine optimal fliegende Rakete muss dabei während des
Fluges in der Erdatmosphäre ihre Längsachse immer exakt parallel zur
momentanen Bahntangente orientieren, um die aerodynamische Belastung
zu minimieren. Man kann auch sagen, dass der Anstellwinkel praktisch
Null sein muss. Diese Voraussetzung werden wir in den folgenden Kapiteln
immer machen.

Die allgemeine Lösung der obigen Gleichung (6.1) ist analytisch nicht
möglich. Selbst im Falle eines exakt senkrechtem Fluges oder g = 0 führt
die Lösung auf ein System komplizierter konfluenter hypergeometrischer
Funktionen. Wir müssen also Idealisierungen einführen. Wir nehmen an,
dass sich die zunehmende Beschleunigung der Rakete mit dem zunehmen-
den Luftwiderstand so kompensieren, dass wir eine konstante effektive
Beschleunigung as der Rakete längs der Bahntangente annehmen dürfen.
Die Geschwindigkeit der Rakete soll zudem wesentlich geringer als

√
g R

sein. Die relevanten Bewegungsgleichungen sind dann einfach (2.9) oder

..
x = as

.
x

v
,

..
y = as

.
y

v
− g. (6.2)

Den mit der Geschwindigkeit zunehmenden Luftwiderstand haben wir
im idealisierten Modell in die mit der Zeit auch zunehmende Raketen-
beschleunigung as mit einbezogen. Der Winkel θ = arctan( .

y/
.
x) zeigt

während des Fluges sowohl den zeitabhängigen Neigungswinkel der Rake-
te als auch die identische momentane Neigung der Bahntangente relativ
zur Erdoberfläche an. Denn es gilt:

• angle of attack: (Anstellwinkel zur Luftströmung): Winkel zwi-
schen Körperlängsachse und Geschwindigkeitsvektor - bei Oberth
mit α bezeichnet.

• pitch angle: (Nickwinkel): Winkel zwischen der Körperlängsachse
der Rakete und dem Horizont .

• flight path angle (FPA): (Flugpfadwinkel): Winkel θ zwischen
dem Geschwindigkeitsvektor der Flugbahn und dem Horizont. θ = 0
entspricht horizontalem Flug.

Multiplizieren wir jetzt in (6.2) die erste Gleichung mit .
y, dann die Zweite

mit .
x und subtrahieren die zweite von der ersten Gleichung, so erhalten
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wir wegen (4.5) in Modifikation zu (4.9) schließlich

(6.3)v
dθ

dt
+ g cos[θ] = 0.

Multiplizieren wir nun in (6.2) die erste Gleichung mit .
x, die Zweite mit.

y und addieren beide Gleichungen, so ergibt sich

(6.4)dv

dt
= as − g sin[θ].

Aufgrund der Kettenregel bei Differentiation folgt weiterhin

(6.5)dv

dt
= dv

dθ

dθ

dt
= as − g sin[θ].

Elimination von dθ/dt durch (6.3) führt unmittelbar zu der Differential-
gleichung für v → v[θ]

(6.6)g cos[θ] dv
dθ

+ (as − g sin[θ]) v = 0.

Division dieser Gleichung durch g cos[θ] und Einführung des Parameters

(6.7)α = as

g

führt zu
(6.8)dv

dθ
+ (α sec[θ] − tan[θ]) v = 0.

Die Lösung dieser Differentialgleichung kann in der Form

(6.9)v[θ] = vH sec[θ]
(sec[θ] + tan[θ])α

geschrieben werden. vH bezeichnet hier die Horizontalgeschwindigkeit
der Rakete am Gipfelpunkt der Flugbahn mit θ = 0. Der Hodograph der
Geschwindigkeit ergibt sich zu

(6.10).
x = vH

(sec[θ] + tan[θ])α
; .

y = vH tan[θ]
(sec[θ] + tan[θ])α

.
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Fig. 6.2: Der Hodograph der ungelenkten Flugbahn einer Rakete mit Be-
schleuigungen von 2g bis 4g. Normiert auf die horizontale Geschwindigkeit
vH bei θ = 0.

Mit Hilfe von (6.4) ergeben sich jetzt die drei Differentiale

dt = −vH

g

sec[θ]2

(sec[θ] + tan[θ])α
dθ, (6.11)

dx = −v2
H

g

sec[θ]2

(sec[θ] + tan[θ])2α
dθ, (6.12)

dy = −v2
H

g

sec[θ]2 tan[θ]
(sec[θ] + tan[θ])2α

dθ. (6.13)

Mit Hilfe dieser Ausdrücke ist es möglich, die Flugbahn parametrisch als
Funktion der momentanen Neigung Θ darzustellen. Die Rakete startet
senkrecht, beginnt aber für as/g > 2 sofort nach dem Start den gravity
turn und fliegt in einer immer mehr sich dem Boden neigenden Bahn bis
zum Aufprall weiter. Im Einzelnen gilt jetzt für die Flugzeit

(6.14)T = vH

g

(α+ sin[Θ]) sec[Θ]
(α2 − 1)(sec[Θ] + tan[Θ])α
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und für die Flugbahn in horizontaler

(6.15)x = v2
H

g

(2α+ sin[Θ]) sec[Θ]
(4α2 − 1)(sec[Θ] + tan[Θ])2α

sowie vertikaler Richtung

(6.16)y = v2
H

8 g
(3 + 4α sin[Θ] − cos[2 Θ]) sec[Θ]2

(α2 − 1)(sec[Θ] + tan[Θ])2α

Bemerkenswert ist es, dass obige Formeln eine Klasse von Flugbahnen
beschreiben, die mit einem senkrechten Start (Θ = π/2) mit der Anfangs-
geschwindigkeit 0 am singulären Startort (x, y) = (0, 0) beginnen. Der
Kurvenparameter ist hier der Neigungswinkel −π/2 < Θ ≤ π/2. Es wird
anhand der Formeln auch klar, dass α > 1 bzw. as > g erfüllt sein muss,
damit eine Rakete überhaupt starten kann. Doch nach dem senkrechten
Start neigt sich die Flugbahn durch den gravity turn sehr schnell aus
der senkrechten in die horizontale Lage. Der immer währende senkrechte
Flug ist hier also ein Trivialfall, der durch die obige Lösungsklasse der
entsprechenden Differentialgleichungen nicht beschrieben wird.

Die Gipfelpunkt der Flugbahn ist mit Θ = 0 durch die Ausdrücke

TH = vH

g

α

α2 − 1 ; xH = v2
H

g

2α
4α2 − 1 ; yH = v2

H

4 g
1

α2 − 1 .

gegeben. Wichtiger als der Gipfelpunkt ist jedoch die Flugzeit (Brennzeit
des Triebwerkes der Congreve Raketen) und die Reichweite der Rakete
bis zum Aufschlag. Der negative Aufschlagwinkel folgt aus der Gleichung
(6.16) zu

(6.17)sin[ΘA] =
√
α2 − 1 − α

und ist somit nur vom Beschleunigungsverhältnis α ≡ as/g abhängig.
Mit Hilfe des Hodographen ergibt sich dann die Aufschlaggeschwindigkeit
zu

v2
A

v2
H

=
(
2 + 2α

(√
α2 − 1 − α

))α−1

(
√
α2 − 1 + 1 − α)2α

.

Der Quotient strebt für α > 3 relativ schnell gegen die Eulersche Zahl e.
Das heißt, es gilt für α ∼ 3 die Abschätzung vA ∼

√
e vH . Die Flugweite

194



0.000 0.002 0.004 0.006 0.008 0.010
0.000

0.002

0.004

0.006

0.008

0.010

g x�vH
2

g
y�

v H2

Fig. 6.3: Anfängliche Flugbahnen von idealisiert senkrecht startenden Raketen
in Abhängigkeit unterschiedlicher Beschleunigungen as = α g mit identischen
Gipfelgeschwindigkeiten vH . Von der unteren Flugbahn mit α = 6 geht es in
Schrittweiten von 1 bis zur oberen Bahn mit α = 2. Deutlich ist zu sehen,
dass bei hohen Beschleunigungen die Rakete effektiv einen „Schrägstart“
durchführt, der durch eine Lafette realisiert werden kann. Nur bei α = 2 kann
man noch von einem nahezu Senkrechtstart mit anschließendem „gravity
turn“ sprechen.

w auf ebenen Gelände läßt sich nun als Funktion von vA darstellen durch

(6.18)w = v2
A

g

(α+
√
α2 − 1)

√
2 + 2α(

√
α2 − 1 − α)

4α2 − 1 .

In ähnlicher Weise können wir auch die Flugzeit bis zum Aufschlag durch
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die überraschend einfache Beziehung

(6.19)TA = vA

g
√
α2 − 1

darstellen. Bei den Congreve- Raketen zu Beginn des 19ten Jahrhunderts
war die Endgeschwindigkeit sicherlich nicht höher als die Schallgeschwin-
digkeit cs. Mit vA ∼ 300 m/s, g ∼ 10m/s2 und α ∼ 3 erhält man als
Abschätzung T ∼ 12 Sekunden Brenndauer der Raketen. Damit ergibt
sich auch die wichtige Relation zwischen Reichweite w und Flugzeit
(Brenndauer) T der Rakete zu

(6.20)w = 1
2 α g T

2
(

1 − 9
8α2 − 1

128α4 − . . .

)
,

also mit den obigen Daten etwa 1500 m.
Mathematisch interessant ist das Verhalten der Kurve um den Startort

mit θ ∼ π/2. Mit der Skalierung

x = v2
H

g
X; y = v2

H

g
Y

folgt für große α das Verhalten (α ≫ 1, X → 0)

(6.21)Y ∼ X

2

(
1 + 1

2α ln
[ e

4αX

])
.

Man kann hier die interessante Tatsache erkennen, dass Raketen mit sehr
hoher Start-Beschleunigung α ≫ 2 ohne Probleme von einer Lafette einen
Schrägstart durchführen können, wobei sich asymptotisch als niedrigste
Elevation der Winkel Θ = arctan[1/2] ∼ 26.4 Grad ergibt.

Über 100 Jahre nach den längs vergessenen Congreve - Raketen über
Kopenhagen wiederholte sich am 14. Juli 1941 in der weißrussischen Stadt
Orscha das Geschehen: Plötzlich brach über die deutschen Besatzungs-
truppen ein höllisches Feuer los. Franz Halder (1884-1972) berichtete
in seinem Kriegstagebuch: Die Russen setzen eine bisher unbekannte Waf-
fe ein. Ein Feuersturm von Geschossen brannte den Bahnhof von Orscha,
alle Streitkräfte und militärisches Gerät nieder. Metall schmolz und die
Erde brannte. Zum erstenmal setzte die rote Armee die bis dahin streng
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geheimen Katjuscha - Raketenwerfer BM 8/BM 13 mit Reichweiten von
5500 bis zu 8500 Metern ein. Die Raketen erreichten eine Brennschlussge-
schwindigkeit von etwa 250-350 m/s und schlugen nur wenige Sekunden
nach ihrer Hörbarkeit ein. (Stalinorgel). Diese Raketen waren somit die
erste wirksame Weiterentwicklung der Congreve - Raketen von 1807.

6.2 Die Aufstiegsbahn einer Rakete
Eine zentral Frage der Raketenballistik ist das Problem, mit welcher Flug-
bahn man optimal von der Erdoberfläche in eine Erdumlaufbahn gelangt.
Umgekehrt stellte sich bei der Mondlandung 1969 das Problem, wie man
aus einer Kreisbahn oder aus einer Ellipsenbahn um den Mond optimal
durch Raketenbremsung auf diesem Körper landet, der ja von keiner Luft-
hülle umgeben ist. Beide ziemlich komplizierten dynamischen Probleme2

hängen eng miteinander zusammen und sollen hier in einem idealisier-
ten analytischen Modell diskutiert werden. Die Grundgleichungen des
vorhergehenden Kapitels reichen dafür nicht mehr aus.

Hermann Oberth (1894-1989) bezeichnete schon 1929 in seinem
Buch Wege zur Raumschifffahrt diese nach Osten geneigten optimalen
Aufstiegsbahnen als Synergiekurven der Rakete ([41])3. Allerdings ent-
spricht diese Synergiekurve nicht exakt der von Ihm vorher definierten
sogenannten Raketenlinie, bei der die Richtung der Raketenlängsachse
immer parallel zur momentanen Bahntangente liegt. Beim Flug durch eine
Atmosphäre wird dies durch passive Leitwerke automatisch erreicht. In
einer Fußnote seines Buches von 1929 auf Seite 177 bemerkte er dann auch
([41]): Man hat mir hier entgegengehalten, dass das Raumschiff am besten
auf einer reinen Raketenlinie aufsteigen würde, weil dabei dauernd cos[α]
= 1 sei, während bei der Synergiekurve die Düse wiederholt einen Winkel

2Im Oktober 2012 berichtete J. von Puttkamer (1933-2012) bei einem Vortrag in
Darmstadt (ESOC/ESA) einige Anekdoten über das Vorgehen in den frühen 1960er
Jahren bei der NASA, komplizierte Aufstiegsbahnen von Raketen mithilfe der
damaligen Rechnertechnik (zunächst mechanische, dann elektrische Walzenrechner)
zu berechnen.

3Auf Seite 171 seines Werkes von 1929 schreibt Oberth: Die Kurve, die das Raum-
schiff bei dieser Art des Aufstieges beschreibt, will ich Synergiekurve nennen.
Sie zerfällt naturgemäß in vier Abschnitte: 1. Gradliniger schräger Aufstieg, 2.
Umbiegung der schrägen Fahrtrichtung in die Waagerechte, 3. waagerechte Fahrt
bis zur Erreichung der zirkulären Geschwindigkeit, 4. Von da bis zur Erreichung
der Grundgeschwindigkeit Fahrt auf einer Raketenlinie.
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Fig. 6.4: Start der Saturn V (Apollo 11) im Jahre 1969. Wenn die Schallge-
schwindigkeit überschritten ist, tritt am Flugkörper ein eigenartiges Phänomen
auf, die sogenannte Prandtl-Glauert-Kondensationswolke. Es handelt sich
hier um kondensierte Wassertropfen hinter der Überschall - Schockwelle.

mit der Fahrtrichtung bilden müsse.... Oberth bevorzugte für den Start
einer Rakete eine schräge Aufstiegsbahn, weil dadurch seiner Meinung
nach die Gravitationsverluste etwas vermindert werden. Wir später sehen,
dass für hohe Anfangsbeschleunigungen der Rakete (FlaRak - Systeme)
diese Forderung tatsächlich sinnvoll ist. Die konsistente Berechnung einer
zunächst senkrechten Aufstiegsbahn eines Raumschiffes in eine dann hori-
zontale Kreisbahn um die Erde in Form einer reinen “Raketenlinie” konnte
damals von Oberth aufgrund mathematischer Schwierigkeiten selbst für
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eine konstante Raketenbeschleunigung nicht durchgeführt werden. Der
folgende Abschnitt wird diese Probleme deutlich aufzeigen.

Die kräftefreie Bewegung einer Rakete folgt der Bewegungsgleichung

(6.22).
v = cg q

m0 − q t
.

Die Größen cg bedeutet dabei die Ausströmgeschwindigkeit der Gase, q
die pro Zeiteinheit ausgestoßene Masse und m0 die Anfangsmasse der
Rakete. Man erhält für die Geschwindigkeit v und den zurückgelegten
Weg s die bekannten Formel (Formeln von W. Moore (1813),[37])

v = cg ln
[

m0

m0 − q t

]
s = cg

{
t+

(
m0

q
− t

)
ln
[
1 − q t

m0

]}
Im Falle g = 0 (ohne Gravitationsfeld) gilt also auch

.
v = cg

q

m0
exp

[
v

cg

]
,

woraus folgt, dass die Beschleunigung mit der erzielten Geschwindigkeit
exponentiell ansteigt.

Im Folgenden werden wir für unsere idealisierte Modellrakete wäh-
rend des Fluges eine mittlere konstante Beschleunigung as annehmen.
Allerdings kommt jetzt im Gegensatz zum vorhergehenden Kapitels zur
Gravitation auch noch die Zentrifugalbeschleunigung aufgrund sehr hoher
Geschwindigkeiten hinzu. Allgemeinere Fälle, die von den detaillierten
technischen Ausführungen und Massenverlusten der Rakete abhängen,
müssen immer numerisch integriert werden. Der höhenabhängige Luft-
widerstand k → k[y] und eventuell vorhandene aerodynamische Kräfte
spielen nur in den unteren Atmosphärenschichten eine Rolle und sollen
hier ebenfalls vernachlässigt werden4. Der angle of attack soll somit
immer null sein. Der zeitliche Verlauf dieses Winkels θ (flight path
angle) zur Bodenfläche wird durch die dynamischen Beschleunigungen

4Der Luftwiderstand in den unteren Atmosphärenschichten der aufsteigenden Rakete
ist für das seltsame Phänomen verantwortlich, dass Astronauten (Kosmonauten)
beim plötzlichen Brennschluss der ersten Stufe unerwartet in die Gurte gedrückt
werden - die Rakete also bis zur Zündung der zweiten Stufe wieder gebremst wird.
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Fig. 6.5: Bei der ballistischen Aufstiegsbahn einer Rakete (hier eine russi-
sche Sojus 2-1A vom neuen Kosmodrom Wostotschnij im Jahre 2016) ist der
pitch angle (Neigungswinkel θ) immer exakt gleich dem Winkel des momen-
tanen Geschwindigkeitsvektors (flight path angle) über dem Erdboden. Die
Schubbeschleunigung an der Rakete wirkt also wie eine inverse Luftreibung.
(Bild: sputnik)

und Geschwindigkeiten der Bahn bestimmt. Man spricht hier auch von
einem Gravity Turn. Der Neigungswinkel der Rakete muss mit einer
aktiven Steuerung ständig nachkorrigiert werden (Gimbaling). Während
der Neigungsphase zeigt der Schubvektor nicht exakt auf den Schwer-
punkt der Rakete. Die optimierte Aufstiegsbahn einer Rakete gehört aus
den oben erwähnten Gründen zur Klasse der ballistischen Kurven, die
Oberth im Jahre 1929 als reine Raketenlinien bezeichnet hat.

Für eine qualitatives und auch genähertes quantitatives Verständnis ist
es wünschenswert, eine genäherte analytische Darstellung der Aufstiegs-
bahn bis in einen Keplerorbit insbesondere beim Start zu haben und diese
dann mit einer numerischen Integration der exakten Gleichungen zu ver-
gleichen. Dazu müssen die exakten Gleichungen so weit idealisiert werden,
damit eine analytische Integration möglich ist. Als Grundlage benutzen
wir die Modellgleichungen (5.16) und (5.17), in denen aber der Luftwider-
stand durch eine entsprechende entgegengesetzte Beschleunigung ersetzt
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wird. Dann erhalten wir die mathematischen Modellgleichungen

..
x = as

.
x

v
−

.
x

.
y

R
, (6.23)

..
y = as

.
y

v
+

.
x2

R
− g. (6.24)

Dies sind die globalen ballistischen Differentialgleichungen für die Ge-
schwindigkeitsänderung und Richtungsänderung einer Rakete in der Nähe
der Erde bei hohen Geschwindigkeiten. Multiplizieren wir nun (6.23) mit.
y, dann (6.24) mit .

x und subtrahieren die zweite von der ersten Gleichung,
so erhalten wir wegen (4.5) in Modifikation zu (4.9) schließlich

(6.25)v
dθ

dt
+
(
g − v2

R

)
cos[θ] = 0.

Multiplizieren wir nun (6.23) mit .
x, dann (6.24) mit .

y und addieren beide
Gleichungen, so ergibt sich

(6.26)dv

dt
= as − g sin[θ].

Aufgrund der Kettenregel bei Differentiation folgt weiterhin

(6.27)dv

dt
= dv

dθ

dθ

dt
= as − g sin[θ].

Elimination von dθ/dt durch (6.25) führt unmittelbar zu der Differential-
gleichung für v → v[θ]

(6.28)
(
g − v2

R

)
cos[θ] dv

dθ
+ (as − g sin[θ]) v = 0.

Auch hier erweist es sich wieder als günstig, anstatt des vertikalen Nei-
gungswinkel θ die Größe z gemäß sin[θ] = tanh[z] einzuführen. Der
Neigungswinkel θ der Raketenlängsachse als auch der Bahntangente
der Rakete zum Boden ist dabei durch die Gudermann - Funktion
gd[z] = arctan[sinh[z]] gegeben. Denn es gilt

sin[θ] = tanh[z], cos[θ] = sech[z], dθ = dz

cosh[z] , (6.29)
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Für die Umkehrung nach der Hilfsvariablen z folgt

z = ln[sec[θ] + tan[θ]]. (6.30)

Beim Start der Rakete ist aber wegen (6.30) z → ∞. Der Wertebereich
von θ ist dann θ ∈ [0, π/2] und der von z ∈ [0,∞]. Aus (6.29) und (6.30)
folgt nebenbei auch das interessante Integral∫ ∞

0

dz

cosh[z] = π

2 .

Mit dieser Transformation verwandelt sich (6.28) in

(6.31)
(
g − v2

R

)
dv

dz
+ (as − g tanh[z]) v = 0.

Wir dividieren diese Gleichung durch v ̸= 0 sowie g und erhalten das
Differential (

1
v

− v

g R

)
dv = −

(
as

g
− tanh[z]

)
dz.

Eine Integration dieser Gleichung führt zu

ln[v2] − v2

g R
= −2

(
as

g
z − ln cosh[z]

)
+ C.

Die Rakete startet nun vertikal bei z = ∞ und erreicht nach einer gewissen
Zeit in der horizontalen Lage z = 0 die Brennschlussgeschwindigkeit

√
g R.

Daraus folgt für die Integrationskonstante

C = ln[g R] − 1

Normieren wir die Geschwindigkeit v mit der horizontalen Endgeschwin-
digkeit

√
g R

v =
√
g R V[z], (6.32)

so gelangen wir zu der idealisierten Gleichung

(6.33)ln[V2] − V2 = −1 − 2α z + 2 ln cosh[z]

für die Funktion V[z] einer ballistischen Rakete. Der Parameter α ist
durch

(6.34)α = as

g
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definiert. Die Auflösung der transzendenten Gleichung (6.33) nach V[z]
gelingt für alle z ≥ 0 mit dem oberen Zweig der Lambertschen W -
Funktion. Die Lösung lautet einfach

(6.35)V[z]2 = −W0
[
−e−1−2 α z cosh[z]2

]
.

Die Variable z ist durch (6.30) als Funktion der Neigung θ der Rakete
gegeben. Als Funktion von θ können wir auch

(6.36)V[θ]2 = −W0

[
− e−1 sec[θ]2

(sec[θ] + tan[θ])2α

]
.

schreiben. Die ungewöhnliche Funktion W0[z] ist definiert als der obe-
re Zweig der Lambertschen Funktion W[ξ], gegeben als Lösung der
äquivalenten Funktionalgleichungen

W[η] eW[η] = η, W
[
ξ eξ
]

= ξ. (6.37)

Im Falle einer Endgeschwindigkeit
√
g R größer als die Kreisbahngeschwin-

digkeit tritt die Besonderheit auf, dass die Rakete beim Aufstieg über
die beabsichtigte Höhe hinausschießt und erst beim leichten Sinkflug (z
< 0) die endgültige horizontale Orbitalgeschwindigkeit

√
g R erreicht.

Wir betrachten diesen Sonderfall hier nicht ausführlich, weil in dieser
letzten Flugphase der zweite Zweig W−1[ξ] der Lambertschen Funktion
genommen werden müsste.

Die Geschwindigkeit v[z] ≡ v[θ] ist damit als Funktion von z oder
entsprechend dem Neigungswinkel der Rakete θ bekannt. Es wird mit
der Funktion V[θ] ein kompliziertes Randwertproblem gelöst, da zum
Startzeitpunkt völlig unklar ist, wie die Rakete aus der Vertikalen durch
ein entsprechend gesteuertes Neigungsprogramm mit der horizontalen
Kreisbahngeschwindigkeit

√
g R in einer Erdumlaufbahn in einer noch

unbekannten Höhe endet. Der Raketenpionier Oberth bezeichnete Auf-
stiegsbahnen von Raketen mit geringstem Energieaufwand mit dem Wort
Synergiekurven. Die Lösungen der obigen Differentialgleichung be-
schreiben allerdings mehr die von ihm postulierten Raketenlinien, bei
denen der Anstellwinkel zur Luftströmung oder zur momentanen Bahn-
tangente immer null ist. Letztendlich handelt es sich also um ballistische
Kurven. Die Funktion V[z] ist jetzt der entscheidende Schlüssel, um in
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Fig. 6.6: Hodographen ballistischer Aufstiegsbahnen einer Rakete mit kon-
stanter Beschleunigungen von α = 1 (singulär; oberste Kurve) bis α = 2
(unterste Kurve) in Schritten von 0.2. Die horizontale (vx = ẋ) und die
vertikale (vy = ẏ) Geschwindigkeitskomponente sind in Einheiten der zu
erreichenden Kreisbahngeschwindigkeit

√
g R dargestellt. Die Rakete startet

bei einem Winkel θ = 90◦ mit der Geschwindigkeit (vx, vy) = (0, 0) und
gelangt bei einer horizontalen Neigung von θ = 0◦ in eine Umlaufbahn mit
der Kreisbahngeschwindigkeit

√
g R. Singulär ist der Wert α = 1, bei dem die

Rakete die Startrampe nicht verlassen und so auch nicht der „gravity turn“
in die horizontale Richtung stattfinden kann.

unserem idealisierten analytischen Modell die für Aufstiegsbahnen und
auch Mondlandebahnen wichtigen Kenngrößen schnell zu überblicken.
Für die Geschwindigkeit .

x über Grund folgt jetzt sofort

(6.38).
x =

√
g R V[z] sech[z] ≡

√
g R V[θ] cos[θ]

Wegen .
y = .

x tan[θ] folgt für die vertikale Geschwindigkeitskomponente

(6.39).
y =

√
g R V[z] tanh[z] ≡

√
g R V[θ] sin[θ]

Mit (6.30) definieren beide Komponenten den Hodographen unserer opti-
malen Raketenaufstiegsbahn; oder - nach Oberth - den der Raketenlinie.
In Figur (6.6) sind diese für fünf Werte des Parameters α graphisch
dargestellt. Um den zeitlichen Verlauf der Aufstiegsbahn analytisch zu
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Fig. 6.7: Die Aufstiegsbahn und die dazu symmetrische Abstiegsbahn der
Mondlandefähre Eagle im Juli 1969 gehörte zur Klasse ballistischer Flugbah-
nen, die trotz fehlendem Luftwiderstand genau berechnet werden mussten. An-
stellwinkel θ und Schubbeschleunigung waren genau aufeinander abgestimmt,
um aus einer bestimmten Kreisbahn der Höhe H über der Mondoberfläche
zielgenau in einer Entfernung W längs der Mondoberfläche mit der Geschwin-
digkeit Null zu landen. (Bild:NASA 1969)

berechnen, transformieren wir zunächst mit v =
√
g RV die Gleichung

(6.31) in
(6.40)

(
1 − V2) dV

dz
+ (α− tanh[z]) V = 0

um. Mit der Gleichung (6.26) erhalten wir so√
g

R
dt = − V[z]

1 − V2[z] dz. (6.41)

Die Aufstiegszeit der Rakete bis in den waagerechten Flug ergibt sich
daraus durch Integration zu

T =

√
R

g

∞∫
0

V[z]
1 − V[z]2 dz. (6.42)
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Das Integral muss numerisch ausgewertet werden.
Eine wichtige Frage betrifft die erreichte Bahnhöhe H der horizontalen

Zielbahn mit der Geschwindigkeit
√
g R um den Planeten. Mit der Formel

für .
y und (6.41) erhalten wir zunächst

dy = −R V[z]2

1 − V[z]2 tanh[z] dz. (6.43)

Damit erhalten wir das wichtige Resultat

(6.44)H = R

∞∫
0

V[z]2

1 − V[z]2 tanh[z] dz.

Diese Bilanzgleichung bestimmt implizit die Stärke der benötigten Schub-
beschleunigung as = α g, um in eine Kreisbahn von vorgeschriebener
Höhe H (H ≪ R) über einer Planetenoberfläche zu gelangen. Umgekehrt
bestimmt diese Gleichung bei einer Mondlandung die Bremsbeschleuni-
gung as, die man in einer Kreisbahn bei vorgegebener Flughöhe H über
der Mondoberfläche zu einer Punktlandung benötigt.

Durch Umkehrung der Reihe nach der Brenndauer T der Triebwerke
und Einsetzen in die obige Formel für die erreichte Höhe H erhält man
die genäherte Beziehung

(6.45)H ≈ 1
8 g T

2

Hier taucht wieder der ballistische Term g T 2/8 der Wurfparabel auf. Die
Höhe H der erreichbaren Kreisbahn über der Erdoberfläche hängt in
unserem Modell also nur von der operativen Brenndauer T der Triebwerke
ab.

Bei den Mondlandungen in den Jahren 1969-1972 benötigt man eine
weitere wichtige Kenngröße der Flugbahn: Die Länge des Bahnbogens über
der Mondoberfläche vom Startpunkt bis zum Eintritt in die Kreisbahn.
Zunächst gilt wieder mit den Grundgleichungen

dx = −R V[z]2

1 − V[z]2 sech[z] dz. (6.46)
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α H[km] W[km] T[sec] 8H/(g T 2)
1.5 593.2 2282.3 819.1 0.721
1.6 480.0 2119.2 715.9 0.764
1.7 399.4 1979.1 639.2 0.797
1.8 339.1 1857.3 579.5 0.824
1.9 292.6 1750.3 531.4 0.845
2.0 255.7 1655.4 491.7 0.862
3.0 98.0 1079.6 290.9 0.944
4.0 52.6 803.8 210.4 0.969
5.0 33.0 640.9 165.6 0.981

Tab. 6.1: Wichtige Kenndaten für eine ballistische Aufstiegsbahn einer
Rakete von der Erdoberfläche ohne Luftwiderstand in eine kreisförmige Erd-
umlaufbahn als Funktion der konstanten Schubbeschleunigung α = as/g.
Die Daten wurden mit Hilfe der Integrale (6.44), (6.47) und (6.42) gewon-
nen. Die physikalischen Konstanten sind R = 6371 km und g = 9.81m/s2.
Die drei letzten Daten entsprechen hypersonischen Raketen („Awantgard-
Gleiflugkörper“), deren lenkbare Flugkörper nach Brennschluss mit einem
stark erhitzten Schutzschild in ihr Ziel fliegen.

Wiederum ergibt sich durch eine Integration die Bogenweite W zu

W = R

∞∫
0

V[z]2

1 − V[z]2 sech[z] dz. (6.47)

Auch diese Größe hängt nur von α ab. Für die zeitliche Änderung des
Neigungswinkels θ der Rakete (pitch angle = flight path angle) ergibt
sich der Ausdruck

dθ

dt
= −

√
g

R

1 − V2[z]
V[z] sech[z] (6.48)

Mathematisch interessant ist hier das Verhalten des sogenannten pitch -
over am Startplatz z → ∞. Hier gilt mit der asymptotischen Formel für
W0[ξ]

V[z]z→∞ ∼ 1
2 exp

[
−1

2 − (α− 1) z
]

(6.49)

und daher
dθ

dt z→∞
∼ −4

√
e

√
g

R
exp[(α− 2) z] (6.50)
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Fig. 6.8: Die Aufstiegsbahn einer Rakete (Space Shuttle) ist eine genau vor-
gegebene Flugbahn, die durch Schwenkung der Triebwerke (gimbaled thrust)
genau verfolgt wird.

Anhand dieser Formel sieht man deutlich, dass sich am Startplatz
der Rakete Aufstiegsbahnen mit konstanter Schubbeschleunigung as

grundsätzlich in zwei Bereiche aufteilen: I.) 1 < α ≤ 2 und II.) α > 2. Im
ersten Bereich startet die Rakete mit einem „pitch - over“ von Null, im
zweiten Fall beginnt das „pitch - over“ schon am Startplatz mit einem
singulären Wert. Hypersonische Raketen mit as ≥ 3 g müssen also schon
zu Beginn sofort in eine „Schrägbahn“ übergehen oder gleich in einer
solchen Bahn starten. Am Grenzwert as = 2 g (α = 2) gilt

dθ

dt α=2
= −4

√
e

√
g

R
∼ 0.47◦/s (6.51)

Schon 20 Sekunden nach dem take off muss sich so die Rakete mit as = 2 g”
schon fast 10 Grad aus der Vertikalen gedreht haben. Aufstiegsbahnen
von schweren Trägerraketen haben daher einen α - Parameter immer
unterhalb von α ≤ 2. Die alte SaturnV - Trägerrakete als auch die neueren
ARIANE-Raketen hielten bzw. halten diese Bedingung tatsächlich ein.

Um die Flugbahn der Rakete kurz nach dem Start als Funktion der Zeit
analytisch zu beschreiben, gehen wir auf (6.41) zurück und entwickeln

208



asymptotisch √
g

R
dt = −1

2 exp
[
−1

2 + (1 − α) z
]
dz. (6.52)

Das Integral für kleine Zeiten t lautet dann (z ≫ 1)√
g

R
t ≃ 1

2(α− 1) exp
[
−1

2 + (1 − α) z
]
. (6.53)

In analoger Form ergibt sich aus (6.38) und (6.39) asymptotisch

.
x ≃

√
g R exp

[
−1

2 − α z

]
(6.54)

und
.
y ≃ 1

2
√
g R exp

[
−1

2 + (1 − α) z
]
. (6.55)

Durch Elimination der Variablen z und durch Einführung der dimensi-
onslosen Zeit

τ =
√
g

R
t (6.56)

erhalten wir im Einzelnen (τ → 0)

(6.57).
x =

√
g R

(√
e
) 1

α−1 [2(α− 1) τ ]
α

α−1 + . . .

und
(6.58).

y =
√
g R (α− 1) τ + . . .

Aus der letzteren Gleichung finden durch Integration nach der Zeit t
leicht

y

R
= 1

2 (α− 1) τ2 + . . . (6.59)

oder in physikalischen Einheiten

y[t] = 1
2 (as − g) t2 + . . . (6.60)

Dies Resultat hätte man auch ohne die asymptotische Analyse hin-
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Fig. 6.9: Die Aufstiegsbahn einer Rakete ohne Luftwiderstand im Falle
as = 2g ≡ konstant. Die roten Zahlen bedeuten die Zeit in Sekunden, die
blauen die Geschwindigkeit in Metern pro Sekunde und die orangen Zahlen
den Anstellwinkel der Rakete zum Horizont in Grad. Die Rakete erreicht in
dieser Aufstiegsbahn nach 492 Sekunden eine Kreisbahn in einer Höhe von
etwa 256 km um die Erde.

schreiben können. Schwieriger ist die Integration der x Koordinate. Man
erhält

(6.61)x

R
= 1

2α− 1
[
2α

√
e
] 1

α−1 [(α− 1) τ ]
2α−1
α−1

Wir führen nun einen Index q nach

q = 2α− 2
2α− 1 ; 1 − q = 1

2α− 1 (6.62)
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ein. Mit den dimensionslosen Koordinaten

X = x

R
, Y = y

R
(6.63)

können wir eine asymptotische algebraische Gleichung für die Aufstiegs-
bahn einer Rakete für die Umgebung des Startplatzes angeben. Durch
Elimination von τ erhalten wir die asymptotische Darstellung

(6.64)Y ∼ 1
2 q

(
1 − q

2 e

)1−q

Xq

wobei e die Eulersche Zahl bedeutet. Mit α = 2 ergibt sich zum Beispiel
der Index q = 2/3, für α = 3/2 dagegen q = 1/2. Startet die Rakete also
mit as = 1.5 g, so sieht ihre idealisierte ballistische Aufstiegsbahn mit
„Gravity Turn“ in den ersten Minuten wie die Funktion Y ∼

√
X/e/2

aus. Es zeigt sich allerdings auch, dass ab α > 3 sich der q-Wert immer
näher der Eins nähert. Das aber bedeutet, dass bei einer hohen Anfangs-
beschleunigung as ≫ g ein Schrägstart der Rakete günstiger wäre als
ein Start aus der Vertikalen. Genau dies hatte ja H. Oberth in seinen
Büchern für eine Synergiekurve vorgeschlagen. Wir kommen auf dieses
Problem bei den FlaRak - Systemen zurück.

Die obigen Ergebnisse motivieren dazu, eine genauere analytische Rei-
henentwicklung der Aufstiegsbahn zumindest für den wichtigen Grenzfall
as = 2 g abzuleiten, bei dem ein Senkrechtstart in jedem Falle sinnvoll ist.
Mit Hilfe von Computeralgebra erhält man so mit (6.23,6.24) und den
asymptotischen zeitlichen Limiten (6.61) und (6.60) für die Aufstiegsbahn
vom Startplatz aus (as = 2 g)

(6.65)x[t] = 4 e1/2g3/2

3R1/2 t3 − 32 e3/2g5/2

15R3/2 t5 + . . .

und
(6.66)y[t] = 1

2 g t
2 − 4 e g2

3R t4 + . . .

Ganz im Geiste von L. Euler können wir nun die x[t] - Entwicklung
nach der Zeit t umkehren und in die zweite Gleichung für y[t] einsetzen.
Auf diese Weise ergibt sich für die ballistische Aufstiegsbahn einer Rakete
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mit as = 2 g in den dimensionslosen Koordinaten (6.63) die Darstellung

(6.67)Y = 32/3

4 (2 e)1/3 X
2/3 − 34/3 e1/3

22/3 5 X4/3 + . . .

Für die Neigung θ der Raketenachse zur Horizontalen (gravity turn) ergibt
sich kurz nach dem Start im Falle as = 2 g die Zeitentwicklung

(6.68)θ = π

2 − 4
√
e

√
g

R
t+ 32 e3/2 g3/2

3R3/2 t3 − . . .

Die idealisierten analytischen Lösungen gelten nur für den Fall as =
konstant und ohne höhenabhängigen Luftwiderstand . Will man diese
Effekte für eine detaillierte Berechnung mit einbeziehen, sind nur noch
numerische Modelle sinnvoll. Dabei müssen wir aufgrund der singulären
Randbedingungen am Startplatz für die zu erreichende Orbitalgeschwin-
digkeit numerisch in der Zeit rückwärts rechnen, weil der Startplatz mit
der Randbedingung v[0] = 0 eine Singularität mit unbekannten Rand-
bedingungen für die zeitliche Ableitung v′[0] darstellt. Dabei muss man
die Endhöhe H für die Kreisbahn so lange variieren, bis die Randbe-
dingungen am Startplatz y[0] = 0 erfüllt sind. Gegenüber der obigen
analytischen Rechnung ist dieses iterative numerische Rechnen relativ
aufwendig, insbesondere bei zweistufigen Raketen mit unterschiedlichem
Schubverlauf.

6.3 Die optimale Mondlandung
Am 20. Juli 1969 bestand zum erstenmal das Problem, ein Raumfahrzeug
aus einer Kreisbahn oder Ellipsenbahn auf einem fremden Himmelskör-
per zu landen, der keine nennenswerte Atmosphäre besitzt. Aus einer
Umlaufbahn mit einer bestimmten Horizontalgeschwindigkeit musste ein
kontrolliertes Bremsmanöver gestartet werden, um exakt mit der ver-
tikalen Geschwindigkeit Null am Boden zu landen. Das mathematisch
Interessante an diesem Vorgang ist auch die Frage, diese Landung mit
einem Minimum an Energieaufwand zu bewerkstelligen. Wir berechnen
mit den Formeln (6.42) und (6.44) die Tabelle (6.2) Hier kann man
schon erkennen, dass aufgrund der ∆v = as T Werte der Energieaufwand
für eine Landung größer wird, wenn die Anfangshöhe ansteigt. Darum
startete die Landephase bei Apollo 11 im Periselen (perilune), bei der
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α H[m] W[km] T[sec] ∆v [m/s]
3.0 26414 292 371 1807
3.1 24583 283 358 1798
3.2 22941 274 345 1790
3.3 21463 265 333 1782
3.4 20126 257 322 1776
3.5 18913 250 312 1770
3.6 17809 243 302 1764
3.7 16800 236 293 1759
3.8 15876 230 285 1755
3.9 15028 224 277 1750
4.0 14247 218 269 1747

Tab. 6.2: Wichtige Kenndaten für eine rein ballistische Abstiegsbahn der
Mondfähre von einer Mondumlaufbahn als Funktion der konstanten Schub-
beschleunigung α = as/g. Die Daten wurden mit Hilfe der Integrale (6.44),
(6.47) und (6.42) gewonnen. Die physikalischen Konstanten sind R = 1734
km und g = 1.622m/s2.

die Fähre nur noch eine Höhe von etwa 50000 [f] oder etwa 15240 [m]
über der Mondoberfläche hatte. Bei solch einer Höhe benötigt man für
eine rein ballistische Landung eine Bremsbeschleunigung von α ∼ 3.92,
also etwa as ∼ 6.34m/s2. Die Flugzeit beträgt nur T ∼ 275s. Diese
kurze Zeitspanne entspricht aber keineswegs den historischen Flugdaten
von 1969, bei denen die Flugzeit bis zum touchdown etwas T ∼ 714 s
betrug. Die Landestrategie muss somit eine Andere gewesen sein. Wir
wollen anhand der historischen Daten das damalige Vorgehen genauer
rekonstruieren.

In der NASA TM X-58040 vom Januar 1970 sind die wichtigsten
Abstiegsbahndaten des Eagle von Apollo 11 zusammengefasst. In der
Tabelle (6.3) sind die Flugdaten in metrische Einheiten (1 [f] = 0.3048
[m]) gerundet umgerechnet. Um die Flugdaten zu verstehen, betrachten
wir die speziellen Bewegungsgleichungen

..
x = −a sin[Θ[t]]; ..

y = a cos[Θ[t]] +
.
x2

R
− g.

mit den Anfangsbedingungen

x[0] = 0, y[0] = H,
.
x[0] = vx,

.
y[0] = vy.
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Event t[m:s] .
x[m/s] .

y[m/s] y[m] Lage

A - 00:07 - - - -
B 00:00 1695 -1 14879 92◦

C 00:26 1685 -1 14851 93◦

D 02:56 1219 -15 13696 79◦

E 04:18 934 -27 11948
F 06:24 444 -32 7510
G 06:42 401 -39 6902 55◦

H 08:26 154 -44 2291
I 10:06 21 -5 156 10◦

J 11:54 0 -1 4

Tab. 6.3: Wichtige historische Kenndaten der Abstiegsbahn der Mondfähre
Eagle von Apollo 11 am 20. Juli 1969. Die Events bedeuten: A: Ullage; B:
Powered descent initiation, C: Throttle to maximum thrust, D: Rotate to
windows-up position, E: LR altitude update, F: Throttle recovery, G: LR
velocity update, H: High gate, I: low gate, J: Touchdown (probe contact).
Unter „Lage“ ist die Neigung der Mondfähre zur Vertikalen gemeint.

vx > 0 ist die zum Zeitpunkt t = 0 gültige Vorwärtsgeschwindigkeit,
vy < 0 die Sinkgeschwindigkeit und H die zum Zeitpunkt t = 0 gültige
Höhe. Innerhalb eines bestimmten Zeitfensters nehmen wir a als konstant
an, während der Lagewinkel Θ der Mondfähre von der Zeit abhängig sein
soll. Die Lösungen dieser Bewegungsgleichungen setzen wir als Taylorreihe
bis zur dritten Ordnung in der Zeit t an. Wir erhalten

x[t] = vx t− 1
2 a sin[Θ] t2 − 1

6 a cos[Θ]
.
Θ t3 − . . .

y[t] = H + vy t− 1
2

(
g − a cos[Θ] − v2

x

R

)
t2 −

−1
6 a sin[Θ]

( .
Θ + 2 vx

R

)
t3 − . . .

Die Bahndaten der Flugphase B-F kann man mit diesen Formeln sehr
gut reproduzieren. Als Unbekannte sind a, Θ und

.
Θ zum Zeitpunkt t = 0

anzusehen. In dieser ersten braking phase bis t = 384s ergeben sich die
best-fit Werte

a = 3.07m/s2, Θ = 91.8◦,
.
Θ = −0.11◦/s.
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Diese Ergebnisse entsprechen sehr gut den NASA - Daten bezüglich der
Neigung (Attitude) der Mondfähre zur Vertikalen. Da die Abbremsung im
Periselen stattfand, musste die Fähre kurzfristig einen Neigungswinkel
größer 90◦ einnehmen, um die Aufwärtsbewegung in der Keplerbahn zu
kompensieren. Bei t = 384s war die Neigung schon auf Θ = 51◦ gesunken.

Für die eigentliche Landephase wollen wir die obigen Bewegungsglei-
chungen weiter idealisieren. Mit R → ∞ und

.
Θ = 0 lauten die Lösungen

jetzt

x[t] = vx t− 1
2 a sin[Θ] t2, y[t] = H + vy t− 1

2 (g − a cos[Θ]) t2.

Der Neigungswinkel der Mondfähre zur Vertikalen soll in diesem Modell
also konstant sein. Kurz vor der Bodenberührung kann aber die Fähre
trotzdem die Neigung Null haben, weil dann die Bremsbeschleunigung in
x - Richtung nicht vm Haupttriebwerk, sondern von kleinen Steuerdüsen
herrührt.

Aus der Landebedingung .
y[TL] = 0 folgt aus den obigen Gleichungen

für die Flugzeit (vy < 0)

(6.69)TL = vy

g − a cos[Θ] .

Aus der weiteren Bedingung y[TL] = 0 folgt für die notwendige vertikale
Bremsbeschleunigung

(6.70)a cos[Θ] = g +
v2

y

2H

Wird a cos[Θ] wieder in die Flugzeit TL eingesetzt, folgt (vy < 0)

(6.71)TL = −2H
vy

.

Aus der Bedingung .
x[TL] = 0 folgen für den Anstellwinkel die Bedingun-

gen
(6.72)a sin[Θ] = −vx vy

2H

und so mit dem Ausdruck für a cos[Θ]

(6.73)tan[Θ] = − vx vy

2 g H + v2
y

.
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Fig. 6.11: Die Mondfähre „Eagle“ kurz nach der Trennung von der Kom-
mandokapsel von Apollo 11. Bei der Abstiegsbahn der Mondfähre war in der
Endphase der Bremsstrahl nicht parallel zum momentanen Geschwindigkeits-
vektor.

Hieraus folgt für jede Flugsituation der Neigungswinkel der Landefähre
zur Vertikalen entgegen der Flugrichtung. Die Bremsbeschleunigung folgt
schließlich aus

(6.74)a = 1
2H

√(
2 g H + v2

y

)2 + v2
xv

2
y.

Es ist nicht weiter überraschend, dass die eigentliche Flugbahn in diesem
Modell eine nach unten geneigte Gerade mit der Steigung (Gleitverhältnis)
von vy/vx ist. Dies sieht man ein, wenn die Zeit t in den Ausdrücken für
x[t] und y[t] eliminiert wird. Denn dann gilt bis in quadratische Näherung

(6.75)y = H + vy

vx
x− vx g − a vx cos[Θ] − a vy sin[Θ]

2 v3
x

x2 − . . .
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In der Landephase gilt aber nach den obigen Gleichungen

(6.76)a vx cos[Θ] + a vy sin[Θ] = vx g,

so dass die Mondfähre in der letzten Minuten vor der Landung einen
Gleitflug der Form

(6.77)y = H + vy

vx
x

durchführte. Dies läßt sich an Hand der Flugdaten verifizieren.
Als Maß für den Treibstoffverbrauch (Energieaufwand) können wir das

Produkt aus Bremsbeschleunigung und Flugzeit ansehen. Man erhält

(6.78)a2 T 2
L = 4 g H + v2

x + v2
y + 4 g2 H2

v2
y

Anhand dieser Beziehung sieht man, dass zu Beginn des Abstieges sowohl
eine zu kleine als auch eine zu große Sinkgeschwindigkeit vy ungünstig
sind. Das Optimum liegt bei

(6.79)vy ≈
√

2 g H.

Der Bremsvorgang dürfte bei der Mondlandung also erst dann beginnen,
wenn die Sinkgeschwindigkeit vy in der Höhe H ungefähr gleich den Wert√

2 g H erreicht hat. Doch ist die optimale Variante aus Sicherheitsgrün-
den ungünstig.

Die obigen Formeln für die Landephase versagen, wenn die Sinkge-
schwindigkeit vy der Fähre zu Beginn fast Null ist, weil dann die Brem-
striebwerke sie in der Schwebe halten würden. Darum betrachten wir zum
Abschluss noch einen Landemodus, bei dem sich zu Beginn die Mondfähre
in einer Höhe H mit einer reinen Horizontalgeschwindigkeit von vx = v0
bewegt. Die Sinkgeschwindigkeit vy soll also zu Beginn null sein. Ohne
Bremsung würde die Kapsel in einer Parabelbahn zu Boden stürzen. Eine
konstant wirkende Bremsbeschleunigung soll jetzt so bestimmt werden,
dass nach einer gewissen Zeit die Fähre vertikal auf dem Mond landen
kann. Wir machen dabei die Approximation v0 ≪

√
g R. Dann gilt mit

u2 << R in (6.31)
V[z] = e−α z + . . . (6.80)
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Wir berücksichtigen hier nur den ersten Term und erhalten für die Diffe-
rentiale der Flugzeit dt, der Weite dx und der Höhe dy

dx = −v2
0
g
e−2α z cosh[z] dz,

dy = −v2
0
g
e−2α z sinh[2 z] dz,

dt = −v0

g
e−α z cosh[z] dz.

Daraus folgen mit α = as/g durch Integration von z = ∞ nach z = 0 die
Bahndaten

(6.81)W = v2
0
g

2α
4α2 − 1 ; H = v2

0
4 g

1
α2 − 1 .

und die Flugzeit
TL = v0

g

α

α2 − 1 .

Mit der Formel (6.81) für die Höhe H ergibt sich als erforderliche Brems-
beschleunigung as = α g

(6.82)α =

√
1 + v2

0
4 g H .

Für die Flugzeit erhalten wir so

(6.83)TL = 2

√
H

g

(
1 + 4 g H

v2
0

)
Das Produkt aus as und TL bestimmt wieder den Energieaufwand des
Landevorganges. Man erhält

(6.84)as TL = v0 + 4 g H
v0

.

Ähnlich wie im vorhergehenden Modell eines Gleitfluges existiert auch
hier eine optimale Relation zwischen der Horizontalgeschwindigkeit v0
und der Höhe H. Der Energieaufwand (Treibstoffverbrauch) ist dann
minimal, wenn die Bedingung

(6.85)v0 ≈ 2
√
g H.
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Fig. 6.12: Eine optimale Abstiegsbahn aus 5000 m Höhe auf den Mond, bei
der die Bremsbeschleunigung immer tangential zur Bahnkurve ausgerichtet
ist. Die roten Zahlen bedeuten die Zeit in Sekunden, die blauen Zahlen die
Vorwärts - und die Sinkgeschwindigkeit in m/s. Mit v0 = 2

√
g H ∼ 180m/s

muss hier as =
√

2 g sein. Die Forderung zwischen v0 und H kann aber in
der Realität nicht erfüllt werden. Die Oberflächenbeschleunigung auf dem
Mond ist im Mittel g = 1.622m/s2.

erfüllt ist. Die Bremsbeschleunigung muss dann

(6.86)as =
√

2 g

und die dazugehörige Flugzeit

(6.87)TL = 2

√
2H
g

betragen.

6.4 Der Max Q Punkt
Eine letzte wichtige Frage bezüglich der Aufstiegsbahn einer Rakete kön-
nen wir noch mit Hilfe eines einfachen analytischen Modelles beantworten:
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In welcher Höhe erfährt die Rakete beim Aufstieg durch die Luftreibung
den maximalen aerodynamischen Staudruck ? Von welchen Parametern
hängt diese kritische Höhe und ihr zugehöriger kritische Staudruck ab?.
Diese wichtige Stelle in der Aufstiegsbahn nennt man auch den Max Q
Punkt. Er liegt meistens in einer Höhe von 10 - 15 km.

Zur Abschätzung idealisieren wir die Aufstiegsbahn im unteren Bereich
durch eine zur Erdoberfläche senkrechte gerade Linie. Die dafür geeignete
Differentialgleichung entnehmen wir dem Kapitel über den Senkrecht-
schuß. Mit (4.227) gilt dann für die Aufstiegsgeschwindigkeit v[h] einer
Rakete mit konstanter effektiver Schubbeschleunigung aeff

(6.88)v
dv

dh
+ k exp [−h/HS ] v2 = aeff .

Auch hier führen wir die neue Höhenvariable η

(6.89)η = e−h/HS ; dη

η
= − dh

HS

ein. Die Differentialgleichung für die idealisierte senkrechte Aufstiegsbahn
einer Rakete mit Luftwiderstand lautet dann

(6.90)v
dv

dη
− kHS v

2 + aeff HS

η
= 0.

Ihre Lösung mit der Anfangsbedingung v[1] = 0 lautet für positiv defi-
nierte Aufwärtsgeschwindigkeit

(6.91)v[η] =
√

2 aeff HS e
−k HS η

√
Ei[−2 kHS ] − Ei[−2 kHS η]

Die Funktion Ei[x] ist wiederum durch den Cauchy - Hauptwert des
Integrals

Ei[x] =
∫ x

−∞

et

t
dt

definiert. Analytische Untersuchungen zeigen nun das bemerkenswerte
Resultat, dass im Grenzfall k → 0 der Ausdruck

k exp [−y/HS ] v[y]2

unabhängig von der Schubbeschleunigung as in der Höhe HQ ≡ HS

maximal wird. Im Falle kHS = 1 gilt immer noch HQ = 0.82HS . Mit
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Fig. 6.13: Das moderne russische S400 - Triumf FlaRak System. Die Rakete
wird vertikal durch ein Gas-Katapult in etwa 30m Höhe geschleudert, wird
dann um einen bestimmten Winkel gedreht und beschleunigt nach Zündung
des Feststofftriebwerkes sehr schnell auf eine Geschwindigkeit von mehr als
2500m/s.

HS ∼ 8 km liegt dies etwas unterhalb den in der Literatur angegeben Wer-
ten. Für die Geschwindigkeit v[HQ] erhält man Werte, die in der Nähe der
kritischen Schallgeschwindigkeit der entsprechenden Atmosphäre liegen.
Generell liegt somit die maximale Beanspruchung beim Überschreiten
der Schallgeschwindigkeit.

6.5 Die Kinematik einer Flugabwehrrakete
Eine Boden - Luft Rakete zur Abwehr eines angreifenden Ziels (FlaRak)
muss sehr schnell in einen gewissen Höhenbereich mit einer extrem großen
Geschwindigkeit gelangen. Dabei ist die Brenndauer der einstufigen Ra-
kete auf eine relativ kurze Zeit beschränkt. Das heute modernste FlaRak
System ist das S400 Triumf System (NATO Code SA-21 Growler) aus der
russischen Föderation. Das System kann mindestens vier verschiedene
Raketentypen mit unterschiedlichen Reichweiten abfeuern. Es sollen in
diesem Abschnitt die einfachsten Grundgleichungen für die Verfolgung
eines Ziels aufgestellt werden. Bezeichnen wir mit dem Vektor r1[t] die Po-
sition der Rakete, mit r2[t] die Position des Zieles, so lautet die einfachste
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Verfolgungsgleichung

(6.92).r1 = v e; e = r2 − r1

|r2 − r1|
.

v → v[t] ist hier die zeitabhängige Geschwindigkeit der Rakete. Durch
den Einheitsvektor e zeigt der Geschwindigkeitsvektor der Rakete stets
auf das Ziel. Um die Beschleunigungen zu analysieren, berechnen wir

(6.93)..r1 = a e + v
.e, ...r1 = j e + 2 a .e + v

..e.

Die Größe j → j[t] bezeichnet den Ruck (jerk), also die Änderung der
Beschleunigung. Man sieht, dass bei einer FlaRak die Richtungsänderung.e sehr wesentlich ist. Weiterhin gilt

(6.94).r1 × ..r1 = v2 (e × .e)

Damit läßt sich die Torsion

(6.95)τ = (e × .e) ◦ ..e
v |e × .e|2

der Bahnkurve berechnen. Je nach Vorzeichen von τ spricht man von
rechts - oder links-wendigen Flugkurven. Ohne entsprechende aerodyna-
mische Leitflügel vorne und/oder hinten können Raketen diese Wendigkeit
nicht erreichen.

6.6 Die vertikale Aufstiegsbahn
In einem vorhergehenden Kapitel haben wir die Aufstiegsbahn einer Ra-
kete in eine kreisförmige Umlaufbahn um die Erde in einem idealisierten
Modell betrachtet. Dabei wurde angenommen, dass sich die Schwere-
beschleunigung g mit der Höhe H vom Erdboden nicht ändert. Diese
Vereinfachung soll nun für den Spezialfall einer vertikalen Aufstiegsbahn
einer Rakete fallengelassen werden. Die Bewegungsgleichung entlang des
Radius r vom Erdmittelpunkt lautet jetzt

(6.96)..
r = as − g

(
R

r

)2
,
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in der wieder as die als konstant angenommene Schubbeschleunigung der
Rakete, g die Schwerebeschleunigung an der Erdoberfläche und R den
Erdradius bezeichnen. Multiplikation der Gleichung mit .

r und Integration
nach der Zeit führt zunächst zu

(6.97)1
2

.
r2 = as r + g

R2

r
+ C1.

Die Integrationskonstante ergibt sich aus der Randbedingung, dass zum
Startzeitpunkt t = 0 die Geschwindigkeit der Rakete Null ist. Damit
erhalten wir

(6.98).
r2 = 2 as (r −R) + 2 g R

(
R

r
− 1
)
.

Wir nehmen jetzt an, dass in der Höhe Hb über dem Erdboden die Rakete
Brennschluss hat. Die dann erzielte vertikale Geschwindigkeit vb ergibt
sich zu

(6.99)v2
k = 2 as Hb + 2 g R

(
R

R+Hb
− 1
)
.

Nach Erreichen dieser Höhe Hb fliegt die Rakete noch ohne Antrieb bis
zur ihrer Gipfelhöhe H weiter und fällt dann im freien Fall wieder zum
Erdboden zurück. Energetisch führt dies auf die alternative Bedingung

(6.100)v2
k = 2 g R

(
R

R+Hb
− R

R+H

)
.

Durch Differenzbildung ergibt sich so die wichtige Relation

(6.101)as Hb = g R

(
1 − R

R+H

)
.

Die energetische Bedeutung dieser Relation ist offensichtlich. Aus einer
bekannten Gipfelhöhe einer Rakete beim Senkrechtsflug können wir also
auf das Produkt aus Schubbeschleunigung as und Brennschlusshöhe Hb

schließen.
Eine weitere Bedingung ergibt sich aus der gesamten Flugzeit der

Rakete vom Start bis zum Wiederaufprall auf der Erdoberfläche. Die
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erste Zeitspanne T1 ist die Brenndauer der Raketentriebwerke bis in die
Höhe Hb. Mit Hilfe von (6.98) erhält man hierfür das Integral

(6.102)T1 =
∫ Hb

R

0

√
R (1 + u) du√

2u (as − g + as u)
.

Bei Höhen Hb bis etwa 1000 km lässt sich das Integral bis auf wenige
Sekunden durch den Ausdruck

(6.103)T1 ∼

√
2Hb

as − g

approximieren. Die weiteren Zeitabschnitte T2 bis zum Gipfelpunkt und
T3 bis zum Aufprall können einfach mit Hilfe des Differentials

dr√
R
r − R

R+H

=
√

2 g R dt

berechnet werden. Wir erhalten im Einzelnen

T2 =

√
R+H

R

(√
(R+Hb)(H −Hb) + (R+H) arctan

[√
H−Hb
R+Hb

])
√

2 g R
,

T3 =

√
R+H

R

(√
RH + (R+H) arctan

[√
H
R

])
√

2 g R
.

Analytisch kompakter können wir mit der hypergeometrischen Funktion
auch

(6.104)T2 =

√
2 (H −Hb)

g

(
1 + H

R

)
2F1

[
− 1

2 ,
1
2 ; 3

2 ; H−Hb
R+H

]
und

(6.105)T3 =
√

2H
g

(
1 + H

R

)
2F1

[
− 1

2 ,
1
2 ; 3

2 ; H
R+H

]
schreiben. Die gesamte Flugzeit ist somit T = T1 + T2 + T3.

Die Formeln sollen nun an zwei Testflügen der Nordkoreanischen zwei-
stufigen ballistischen Raketen Hwasong-14 und Hwasong-15 aus dem
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Jahre 2017 erprobt werden. Beide Raketen flogen zwar nicht in einer ex-
akten vertikalen Flugbahn, doch bei einem H : W Verhältnis von etwa 4:1
oder 5:1 ist die vertikale Bahn schon eine sehr gute Approximation. Am
17. Juli 2017 erreichte eine Hwasong-14 eine Gipfelhöhe von H = 3725
km. Die gesamte Flugzeit bis zum Aufschlag im Japanischen Meer betrug
T ∼ 2832 s. Mit R = 6371 km und g = 9.81m/s2 entspricht diese
Gipfelhöhe H = 3725 km einer reinen ballistischen Flugzeit von

2T3 ∼ 2581 s

Die Differenz zur längeren Flugzeit von 2832 Sekunden muss im Wesentli-
chen auf die Beschleunigungsphase der Rakete beim Start zurückzuführen
sein. Eine konsistente Lösung der Gleichungen (6.101) mit den drei Zeit-
abschnitten führt auf die eindeutigen Parameter

as ∼ 21m/s2; Hb ∼ 1100 km; T1 ∼ 435 s

Am 28. November 2017 erreichte eine neu entwickelte Hwasong-15 eine
Gipfelhöhe von H ∼ 4475 km. Die gesamte Flugzeit bis zum Aufschlag
im Japanischen Meer betrug diesmal T ∼ 3180 s. Die reine ballistische
Boden-Boden Flugzeit für diese Höhe beträgt

2T3 ∼ 3012 s.

Aus der Differenz ergeben sich jetzt die Parameter

as ∼ 29m/s2; Hb ∼ 897 km; T1 ∼ 304 s

Deutlich ist zu erkennen, dass die beiden Stufen der Hwasong-15 im
Mittel mit as ∼ 3 g beschleunigen, also wesentlich stärker als die der
Hwasong-14 mit etwa as ∼ 2 g sind. Auffällig ist auch die wesentlich
kürzere Gesamt-Brenndauer gegenüber den Hwasong-14 Triebwerken.

Beim vertikalen Raketenflug des Amazon-Milliardärs J. Bezos im Juli
2021 in der Raumkapsel New Shepard für Weltraumtouristen in Höhen
von über 100 km können wir in den obigen Formel die Abnahme von g
in guter Näherung vernachlässigen. Für die Brennschlussgeschwindigkeit
ergibt sich bei angenommenen konstanten as

(6.106)vb = (as − g)T1; Hb = 1
2 (as − g)T 2

1 .

226



Elimination von T1 führt so auf

(6.107)Hb = v2
b

2 g
1

α− 1 .

Für die Gipfelhöhe ergibt sich analog

(6.108)Hg = v2
b

2 g
α

α− 1 .

Das Verhältnis von Gipfelhöhe Hg und Brennschlusshöhe Hb ist in diesem
idealisierten Modell somit genau α ≡ as/g. Die gesamte Flugzeit ohne
Luftwiderstand entspräche dem Ausdruck

TF = vb

g

(
1 + 1

α− 1 +
√

α

α− 1

)
.

Mit Luftwiderstand muss der Wurzelausdruck durch den Faktor in (4.240)
korrigiert werden. Diese Korrektur kann die Missionsdauer um den Faktor
2 erhöhen.

6.7 Die Keplerbahn
Wie weit kann eine ballistische Interkontinentalrakete nach dem Brenn-
schluss der letzten Stufe fliegen? Mit den Formeln der Wurfparabel können
wir das nicht mehr genau genug abschätzen, da zwar über 100 km Höhe der
Luftwiderstand praktisch verschwindet, dafür aber das Gravitationsfeld
kein konstantes Beschleunigungsfeld mehr darstellt und die Erdoberfläche
gekrümmt erscheint. Die Rakete bewegt sich nun bei Geschwindigkeiten
von etwa 6 km/s auf einer Keplerschen Ellipse, und es besteht die Aufgabe,
die Formel (3.3) als Grenzfall einer allgemeineren Beziehung aufzufassen.
Dies Problem hat schon I. Newton in seinem Hauptwerk 1687 andisku-
tiert. Als neue Größe führe man jetzt die Kreisbahngeschwindigkeit vK

eines masselosen Körpers um die Erdkugel mit der Masse M im Abstand
R ein. Für diese gilt (G = Gravitationskonstante; g = GM/R2)

vK =
√
GM

R
≡
√
g R (6.109)
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Hat nun eine Rakete nach Brennschluss im Abstand R vom Erdmittel-
punkt die Geschwindigkeit v0 und den Abgangswinkel Θ (Elevationswin-
kel), so besteht die Aufgabe, diese lokalen Parameter mit den globalen
Bahnkonstanten der Keplerellipse zu verknüpfen. Man kann so vorgehen:
In Polarkoordinaten (r, χ) lautet die Ellipsengleichung

r[χ] = p

1 − ϵ cos[χ] . (6.110)

χ = 0 bedeutet hier das Apogäum der Bahn (siehe Fig. 6.14). Mit
dem ganzen Bogenwinkel φ und dem Erdradius R erhält man die erste
geometrische Bedingung

R = p

1 − ϵ cos[φ/2] . (6.111)

Andererseits gilt für das Quadrat der Geschwindigkeit in einer Keplerel-
lipse

v2 =

√
GM

(
2
r

− 1
a

)
, (6.112)

wo G die Gravitationskonstante, M die Masse des Planeten und a die
große Halbachse der Ellipse bedeuten. Für den Bahnparameter gilt au-
ßerdem p = a (1 − ϵ2). Mit dem Geschwindigkeitsverhältnis

γ = v0

vK
≡ v0√

g R
(6.113)

erhält man so eine dynamische Bedingung

γ2 = R

p

(
1 − 2 ϵ cos[φ/2] + ϵ2

)
. (6.114)

Aus (6.111) und (6.114) folgt die wichtige Bedingung

γ2 = 1 + ϵ2 − (2 − γ2) ϵ cos[φ/2]. (6.115)

Eine zweite geometrische Bedingung entsteht durch den an der Erdoberflä-
che gültigen Elevationswinkel Θ und die lokale Neigung der Bahntangente
gegenüber dem Radiusvektor. Mathematisch lautet die Bedingung

tan[Θ] =
∣∣∣∣1r drdχ

∣∣∣∣
χ→φ/2

(6.116)
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Mit Hilfe der Ellipsengleichung folgt daraus

tan[Θ] = ϵ sin[φ/2]
1 − ϵ cos[φ/2] (6.117)

Aus (6.114) und (6.117) kann man ϵ eliminieren und erhält eine Bestim-
mungsgleichung für den Bahnbogen φ und damit auch für die Wurfweite
W = Rφ

(2 − γ2) sin[φ/2] = γ2 sin(2Θ + φ/2). (6.118)
Auflösen nach φ führt zu

(6.119)tan
[φ

2

]
= v2

0 sin[2 Θ]
2 (g R− v2

0 cos[Θ]2)

Dieser Ausdruck ist die Newton’sche Erweiterung der Beziehung (3.3) –
nun aber für sehr hohe Abgangsgeschwindigkeiten, um auch den Einfluss
der Erdkrümmung und die Abnahme der Erdbeschleunigung mit der Höhe
zu berücksichtigen. Die Wurfparabel ist jetzt der lokale Grenzfall einer
Keplerschen Ellipse geworden. Die Wurfweite W längs der Kugeloberfläche
der Erde ist die Bogenlänge

W = Rφ. (6.120)

Durch eine Reihenentwicklung nach γ und φ = W/R lässt sich die
Korrespondenz beider Formeln leicht veranschaulichen. Man erhält mit
(6.119)

W = v2
0
g

sin[2 Θ]
(
1 + γ2 cos[Θ]2 + . . .

)
(6.121)

Im Falle γ → 0 erhalten wir wieder die klassische Torricelli - Galilei
Formel der Wurfweite.

Um die Gipfelhöhe H der Bahn im Apogäum der Bahn (Erdferne)
über dem Erdboden zu berechnen, benötigen wir noch die restlichen zwei
globalen Konstanten der Keplerbahn, nämlich die Exzentrizität ϵ und
den Bahnparameter p. Es gilt

ϵ =
√

1 − (2 − γ2) γ2 cos[Θ]2,
p = γ2 R cos[Θ]2,

a = R

2 − γ2 . (6.122)
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H

Fig. 6.14: Die Wurfparabel auf der Erdoberfläche als Grenzfall einer Kep-
ler’schen Ellipse um den Erdmittelpunkt. Die Gipfelhöhe H ist durch die
Formel (6.123), die Wurfweite W = R φ durch die Formel (6.119) berechen-
bar. Der Elevationswinkel Θ ist beim Abschussort und Zielort identisch. Bei
einer optimalen Flugbahn gilt die Beziehung Θ = (π − φ)/4. Schon 1686
hat I. Newton ähnliche Betrachtungen angestellt.

Für γ = 0 folgt zum Beispiel für die Bahnhalbachse a = R/2. Dies ist kein
Paradoxon, denn man denkt sich ja die ganze Masse im Erdmittelpunkt
vereinigt. Die Situation ist also nicht identisch mit einem Stein, der in
einen Schacht fallen würde, der durch die ganze Erde bis auf die andere
Seite getrieben wäre.

Mit den obigen Formeln ergibt sich die Gipfelhöhe H im Apogäum (=
Erdferne) der Bahn über dem Erdboden zu

(6.123)H = R

(√
1 − (2 − γ2) γ2 cos[Θ]2 − (1 − γ2)

2 − γ2

)
.

230



Eine Reihenentwicklung führt hier auf den Ausdruck

H = v2
0

2 g sin[Θ]2
(

1 + 1
4 γ

2 (3 + cos[2Θ]) + . . .

)
. (6.124)

Auch hier erkennt man wieder vor der großen Klammer den klassischen
Term der Wurfparabel. Will man für vorgegebene Werte von H und W
einer ballistischen Flugbahn den Abgangswinkel Θ und die Abgangsge-
schwindigkeit v0 berechnen, so müssen zunächst die Formeln (6.119) und
(6.123) umgeschrieben werden. Wir setzen

γ = v0√
g R

; cos[Θ] = vx

v0
; sin[Θ] = vy

v0
; v0 =

√
v2

x + v2
y

und erhalten

tan
[

W
2R

]
= vx vy

g R− v2
x

,

H

R
=

v2
y

g R− v2
x − v2

y +
√

(g R− v2
x)2 + v2

x v
2
y

.

Die Wurzel im zweiten Ausdruck kann aber durch die Wurfweite W der
ersten Formel eliminiert werden. So erhalten wir vereinfacht

tan
[

W
2R

]
= vx vy

g R− v2
x

,

H

R
=

v2
y

g R− v2
x − v2

y + vx vy csc
[

W
2R

] .
Dieses Gleichungspaar ist von quadratischer Ordnung in vx und vy. Die
positive Lösung lautet

vx =
√

2 g R (R+H)
H + 2R sin

[
W
4R

]2 sin
[
W

4R

]
, (6.125)

vy =
√√√√ 2 g RH2

(H +R)
(
H + 2R sin

[
W
4R

]2) cos
[
W

4R

]
. (6.126)

Daraus folgt für die Abgangsgeschwindigkeit

(6.127)v0 =

√√√√ g R

R+H

(
2H +R

(
1 − H

H + 2R sin
[

W
4R

]2
))

.
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Im Grenzfall W → 0 folgt hieraus einfach

(6.128)v0 =
√

2 g RH
R+H

.

Diese Formel reicht in den meisten Fällen aus, um die maximale kinetische
Energie pro Masse einer ballistischen Rakete aus ihrer erreichten Gip-
felhöhe H ohne Berücksichtigung der Flugweite W abzuschätzen. Diese
Formel folgt auch aus (6.100) im Falle Hb = 0. Für den Abgangswinkel
Θ erhalten wir schließlich

(6.129)tan[Θ] = vy

vx
≡ H

H +R
cot
[
W

4R

]
.

Schwieriger ist die Berechnung der Flugzeit. Wir benötigen dazu den
Flächensatz der gravitativen Zentralbewegung. Man erhält mit der Rand-
bedingung am Startort der Rakete

r[χ]2 dχ
dt

= Rv0 cos[Θ]. (6.130)

Mit der Bahngleichung (6.110) ergibt so zunächst für die Flugzeit das
Integral

T = 2

√
R

g
γ3 cos[Θ]3

∫ φ/2

0

dχ

(1 − ϵ cos[χ])2 . (6.131)

Die Auswertung führt zu

T = 2

√
R

g

[
2Φ

(
√

2 − γ2)3
+ γ sin[Θ]

2 − γ2

]
, (6.132)

wobei die Größe Φ durch

tan[Φ] =
√

1 + ϵ

1 − ϵ
tan

[φ
4

]
(6.133)

gegeben ist. Die Exzentrizität ϵ folgt aus (6.122), der Winkel φ aus (6.119).
Für kleine γ erhalten genähert für die Flugzeit

T = 2v0

g
sin[Θ]

{
1 + 1

6(5 + cos[2Θ]) γ2 + . . .

}
(6.134)

Der erste Term stimmt mit der Wurfparabel wieder überein.
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6.8 Die optimale Flugbahn
Die im vorhergehenden Abschnitt entwickelten Formeln gelten für belie-
bige γ = v0/

√
g R und beliebige Elevationswinkel Θ. Doch wie bei der

Wurfparabel ist auch bei der Raketenballistik über große Entfernungen
die Hauptfrage, bei welchem Elevationswinkel Θ unter Voraussetzung
konstanter „Brennschlussgeschwindigkeit“ maximale Flugweite erreicht
wird. Oder anders ausgedrückt: Bei minimalem Energieaufwand die ma-
ximale Zieldistanz erreichen. Mathematisch bedeutet dies, bei konstanten
γ in (6.119) den Elevationswinkel Θm maximaler Winkeldistanz φ zu
finden. Man erhält sehr einfach das Resultat

tan[Θm] =
√

1 − γ2; cos[Θm] = 1√
2 − γ2

. (6.135)

Für γ → 0 folgt wieder das klassische Resultat Θm = π/4 (45 Grad) von
Tartaglia und Torricelli. Für γ → 1 folgt hieraus Θm → 0, also
horizontale Flugbahn (Kreisbahn) (Erdsatelliten). Für die optimale
Bahnexzentrizität gilt dann

ϵm =
√

1 − γ2. (6.136)

Die dazugehörige maximale Bogenweite um die Erdkugel lautet

sin
[φm

2

]
= γ2

2 − γ2 . (6.137)

Setzt man hier in γ die Anfangsgeschwindigkeit (6.128) ein, so folgt
einfach

(6.138)sin
[φm

2

]
= H

R
.

Eine Rakete, die in einem Vertikalaufstieg die Gipfelhöhe H über dem
Erdboden erreicht, kann also in einer optimalen ballistischen Flugbahn
die Weite Wm

(6.139)Wm = 2R arcsin
[
H

R

]
längs des Erdumfangs erreichen. Für die koreanische Rakete Hwasong-
15 erhalten wir zum Beispiel mit H ∼ 4475 km die maximale Weite
Wm ∼ 9923 km - ohne Berücksichtigung der Erdrotation.
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Fig. 6.15: Eine ballistische RSM-56 Bulava Rakete nach dem Start aus
einem untergetauchten U-Boot der russischen Borei - Klasse. Reichweite bis
zu 8500 km. (credit: wikimedia.commons)

Alternativ können wir (6.137) auch√
1 − sin

[
φm

2
]

1 + sin
[

φm

2
] = tan

[π
4 − φm

4

]
=
√

1 − γ2 (6.140)

schreiben. Ein Vergleich mit (6.135) führt auf die bemerkenswerte Relation

(6.141)Θm = π − φ

4 .

Man kann so für die optimale Flugbahn einer Rakete den Satz ausspre-
chen:

Bei einer optimalen ballistischen Flugbahn einer Interkonti-
nentalrakete muss die Summe aus dem vierfachen Elevations-
winkel beim Start und dem Großkreiswinkel vom Startpunkt
zum Zielpunkt längs der Erdoberfläche immer 180 Grad be-
tragen.

Die dazugehörige minimale Geschwindigkeit folgt aus

(6.142)γm = csc
[
π + φ

4

] √
sin
[φ

2

]
.
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Für φ → π wird Θm → 0 und γm → 1. Die Antipoden bezüglich des
eigenen Standortes sind mit einer ballistischen Rakete also sehr schlecht
zu erreichen. Führen wir die Länge der Sehne S

S = 2R sin
[φm

2

]
(6.143)

vom Startort zum Zielort ein, so können wir auch

(6.144)v0m =
√

2 g RS
2R+ S

schreiben. Die Steighöhe bei einer optimalen Flugbahn beträgt

H[φ] =
√

2R sin
[π

4 − φ

4

]
sin
[φ

4

]
(6.145)

Mit der Sehne S ergibt sich dann

H[S] = 1
4

(√
4R2 − S2 − (2R− S)

)
. (6.146)

Unter der Schar optimaler Flugbahnen mit unterschiedlichen Weiten φ
erreicht die Bahn mit φ = π/2 die absolut größte Steighöhe. Sie
beträgt

H[π/2] =
√

2R sin
[π

8

]2
≡ R

2

(√
2 − 1

)
. (6.147)

Mit dem Erdradius R = 6371 km ergibt sich so für die Maximalhöhe
aller optimalen Flugbahnen

H[φ/2] ≈ 1319 km (6.148)

Keine ballistische Rakete sollte eine Flugbahn mit einer größeren Höhe
aufweisen. Die Reichweite bei dieser Maximalhöhe entspricht dabei genau
1/4 des Erdumfanges.

Die Gleichung für diese Schar optimaler Keplerbahnen bei vorgegebener
Weite W lautet

(6.149)r[χ] =
R sin

(
φ
2
)

1 − tan
(

π
4 − φ

4
)

cos
(
χ− φ

2
)

Der Punkt φ = 0 ist dabei der idealisierte Abgangsort der Rakete. In
Abbildung (6.16) sind einige dieser Bahnbögen graphisch dargestellt.
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Fig. 6.16: Optimale Flugbahnen einer Interkontinentalrakete für Reichweiten
von bis zu 10000 km (1/4 Erdumfang). Je weiter das Ziel, desto kleiner ist
der optimale Neigungswinkel der Rakete bei Brennschluss.

Es verbleibt noch die Flugzeit der optimalen Bahnen zu berechnen.
Aus (6.132) folgt zunächst

(6.150)T = 2

√
R

g

2 arctan
(

1−
√

1−γ2

γ

)
+ γ

√
1 − γ2

(
√

2 − γ2)3

 .
Die Größe γ hängt mit der optimalen Elevation φm bei Brennschluss
durch die Relation (6.140) zusammen. Führen wir hier wieder die Länge
der Sehne S (6.143) vom Startort zum Zielort ein, so gilt mit Hilfe der
hypergeometrischen Funktion alternativ

(6.151)T =

√
2S
g

(
1 + S

2R

)
2F1

[
− 1

2 ,
1
2 ; 3

2 ; 2 S
2 R+S

]
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Im Falle S/R ≪ 1 ist die Sehne S mit der Wurfweite W längs der
Erdoberfläche vergleichbar und wir erhalten im Limes das Ergebnis√

2W/g für die Flugzeit einer optimalen Wurfparabel mit der Elevation
Θ = 45◦. Für S = 2R erhält man H = 0 und T = π

√
R/g, also die

halbe Umlaufzeit einer Kreisbahn im Abstand R.

Zahlenbeispiel: Die Oberflächenbeschleunigung g betrage g = 9.81m/s2,
der Erdradius R = 6.371 ∗ 106m. Mit diesen Daten folgt für die Kreis-
bahngeschwindigkeit √

g R ∼ 7906m/sec. (6.152)
Setzen wir für den Winkelbogen der Wurfweite 1/4 Erdumfang an, also
φm = π/2 oder W ∼ 10000km, so erhalten wir

v0 ∼ 7194m/sec (6.153)

Diese Geschwindigkeit muss die Rakete nach Brennschluss der dritten
Stufe erreicht haben. Um die Flugzeit zum Ziel zu berechnen, erhalten
zunächst für die Zeitkonstante mit den obigen Daten in Sekunden√

R

g
∼ 806 sec. (6.154)

Damit folgt für den ganzen Viertelbogen um die Erde

T ∼ 1933 sec ≡ 32m 13 sec (6.155)

Es dauert also etwas über eine halbe Stunde, bis die Rakete das Ziel
erreicht hat. Mit diesen Zahlen hat man in etwa eine Vorstellung von den
erforderlichen Geschwindigkeiten und den entsprechenden Zeiträumen.
Schon C. Cranz hat in seinem Lehrbuch von 1910 Teile dieser Probleme
etwas umständlich durchgerechnet. An eine Raketenballistik war damals
(1910) natürlich noch nicht zu denken. Erst H. Oberth hat 1929 in
seinem Hauptwerk Wege zur Raumschifffahrt diese Fragen sehr ausführlich
behandelt ([41]). Während seiner Zeit in Peenemünde zu Beginn der
1940er Jahre entwickelte er auch sein Dreistufenkonzept für Raketen mit
sehr großen Reichweiten.

Die Idee, mit einer „Riesenkanone“ anstatt einer Mehrstufenrakete
ein Objekt in das Weltall zu schießen, hatte schon I. Newton. Roman-
haft beschrieben wurde es dann von dem französischen Romancier und
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W[km] Θ◦ v0[m/s] H[km] T[min]
1000 42.8 3015 240 7.91
2000 40.5 4111 459 11.70
3000 38.3 4862 655 14.93
4000 36.0 5431 828 17.87
5000 33.8 5880 976 20.62
6000 31.5 6246 1098 23.22
7000 29.3 6548 1195 25.69
8000 27.0 6801 1264 28.01
9000 24.8 7014 1305 30.18

10000 22.5 7194 1319 32.20

Tab. 6.4: Bahndaten von optimalen ballistischen Kurven für zehn verschiede-
ne Reichweiten auf der Erdoberfläche. Schon der Raketenpionier H. Oberth
hat im Jahre 1929 solche Berechnungen veröffentlicht. Die physikalischen
Konstanten sind hier wieder R = 6371 km und g = 9.81m/s2.

Raumfahrt – Träumer Jules Verne, der 1865 erstmals eine Reise „von der
Erde zum Mond“ beschrieb. Sein Raumgefährt ließ er von einer unterir-
dischen Riesenkanone in Florida mondwärts schießen. Ende des ersten
Weltkrieges wurden von der Firma Krupp Geschütze mit überlangen Roh-
ren entwickelt, um Reichweiten von über 100 km zu erlangen. Und um
1965 wurde mit einem amerikanischen „Raumgeschütz“ von 36 Metern
Länge von Barbados aus Reichweiten von über 250 km erreicht. Neuere
Entwicklungen auf diesem Gebiet sind Magnetspulenkanonen (coil gun),
mit denen kleine „Satelliten“ auf Geschwindigkeiten von etwa 5000m/s
gebracht werden können. Ob damit aber schon erfolgreich kleinere Körper
in die Erdumlaufbahn gelangen konnten, ist dem Autor nicht bekannt.
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7 Schlussbemerkungen
Der Wunsch, die Erde für kurze Zeit mal zu verlassen, ist schon sehr alt.
Dies bezeugt eine Textstelle aus der antiken Lügengeschichte, nämlich
aus der Ikaromenippus oder die Luftreise von Lukian von Samosata
(120-180):

Vom Weltraum aus sah ich die Erde ganz außerordentlich klein
- ich will sagen, noch kleiner als den Mond – so dass ich mir,
wie ich zum erstenmal hinunter guckte, gar nicht vorstellen
konnte, wo all die hohen Berge und das so große Weltmeer
geblieben wären .... Aber der Sonnenglanz, der mir aus dem
Ozean entgegen-spiegelte, ließ mich schließen, dass das, was
ich da sah, die Erde sei.

Das Problem der ballistischen Kurve oder allgemeiner das der Bewe-
gung eines Körpers mit Luftwiderstand und Gravitationsbeschleunigung
hat Mathematiker und Militärwissenschaftler der letzten 500 Jahre immer
wieder beschäftigt. Als I. Newton entdeckte, dass die Bremskraft des
Luftwiderstandes in guter Näherung mit dem Quadrat der Geschwindig-
keit zunimmt, konnte das Problem dem Differentialkalkül unterworfen
werden. Doch eine exakte einfache Lösung wie im planetaren Zweikör-
perproblem der Himmelsmechanik existiert nicht - selbst ein I. Newton
konnte mit seinen ausgefeilten geometrischen Methoden wenig ausrichten.

In den 1930er Jahren kam dann die Raketenballistik hinzu - natürlich
zunächst aus rein militärischen Interessen. Erst Anfang der 1960er Jahre
wurde das Problem von Aufstiegsbahnen einer Rakete in einen Erdorbit
als Teil einer neuen ballistischen Aufgabe untersucht. Solche Fragestel-
lungen waren einem I. Newton oder L. Euler noch völlig unbekannt.
Doch der eigentliche Reiz dieser Probleme liegt gerade in ihren Schwie-
rigkeiten und unerwarteten einfachen Lösungen. Es kommt immer wieder
darauf an, geschickte neue Approximationsmethoden zu finden. Jeder
darf hier seine kreativen Kräfte ausprobieren und kann so dem komplexen
Problem immer wieder neue Seiten abgewinnen. Der Mensch wird hier
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Fig. 7.1: Die witzigen Einfälle oder scherzhaften Erzählungen (Facetien)
eines Münchhausen sind heute durch die Mondflüge in gänzlich unerwarteter
Form Realität geworden.(Bild: Oscar Herrfurth - Ritt auf der Kanonenkugel)

zum Künstler...er kann hier vielleicht sein eigenes mathematisches Taj
Mahal (Tadsch Mahal) finden.
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Anhang

A.1 Die Lambertsche W - Funktion
Um die Aufstiegsbahn einer Rakete in eine Umlaufbahn oder die Wurfwei-
te einer „Kanonenkugel“ bei einem flachen Elevationswinkel zu berechnen,
hat sich die wenig bekannte transzendente W-Funktion W[z] als sehr
nützlich erwiesen. Sie ist definiert durch die äquivalenten Definitionen

η = ξ eξ, ξ = W[η], W[η] eW[η] = η, W
[
ξ eξ
]

= ξ, (A.1)

wobei ξ, η beliebige komplexe Zahlen darstellen können. Die Funktion
wurde zum erstenmal von J.H. Lambert und L. Euler betrachtet und
spielt in der mathematischen Physik heutzutage eine wichtige Rolle. Im
reellen Intervall x ∈ [1/e, 0) existieren für diese Funktion zwei reelle Zwei-
ge, die mit W0[x] (oberer Zweig) und W−1[x] (unterer Zweig) bezeichnet
werden. In der Ballistik benötigt man beide Zweige dieser Funktion. Um
den Punkt x = 0 lautet die Taylorreihe der Funktion W0[x]

W0[x] =
n=∞∑
n=1

(−n)n−1

n! xn

≡ x− x2 + 3
2 x

3 − 8
3 x

4 + 125
24 x5 − . . .

Der Konvergenzradius ist hier 1/e. Führt man jetzt die zwei Hilfsfunktio-
nen

L1 = ln[−x]; L2 = ln[− ln[−x]] (A.2)

ein, so gilt für die asymptotische Entwicklung der Funktion W−1[x] im
Intervall x ∈ [−1/e,−0) die Reihe

W−1[x] = L1 − L2 + L2

L1
− L2 (2 − L2)

2L2
1

+ L2 (6 − 9L2 + 2L2
2)

6L3
1

− . . .

(A.3)
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Fig. A.1: Die Lambertsche W [x] - Funktion mit ihren beiden reellen Zweigen.

Die Koeffizienten sind hier Stirlingsche Zahlen. Für die Funktion im
oberen Zweig gilt analog für x → ∞

(A.4)W0[x] = ln[x] − ln[ln[x]] + ln[ln[x]]
ln[x] − . . .

Weitere zum Teil bemerkenswerte Details findet man in der Literatur
([17]).

Gerade die Funktion −W0[−x] spielt ja bei der analytischen Berech-
nung einer idealisierten Aufstiegs - und Abstiegsbahn einer Rakete (Mond-
landung) eine entscheidende Rolle. In der Literatur wird die Funktion

(A.5)T[x] = −W[−x]

auch die Eulersche T-Funktion genannte. Für die Ableitung gilt die
Relation

W0
′[x] = W0[x]

x (1 + W0[x]) .

Es gilt speziell um den Punkt x = 0 die Taylorreihe der Funktion
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−W0[−x]

T0[x] = −W0[−x] =
n=∞∑
n=1

nn−1

n! xn

≡ x+ x2 + 3
2 x

3 + 8
3 x

4 + 125
24 x5 + . . .

Der Konvergenzradius ist auch hier 1/e. Wir definieren jetzt die Funkti-
onsschar

fk[x] =
n=∞∑
n=1

nn−k−1

n! xn

mit
f0[x] = −W0[−x].

Dann gelten die Rekursionen

fk+1[x] =
∫

x−1 fk[x] dx; {k = 0, 1, 2, . . .}

Im Einzelnen ergibt sich so

f1[x] = −W0[−x] − 1
2 W0[−x]2,

f2[x] = −W0[−x] − 3
4 W0[−x]2 − 1

6 W0[−x]3,

Analog gilt auch die Darstellung

√
−W0[−x] =

n=∞∑
n=0

(n+ 1
2 )n−1

2n! xn+ 1
2

≡ x1/2 + 1
2 x

3/2 + 5
8 x

5/2 + 49
48 x

7/2 + . . .

Definieren wir die parametrisierte Funktion

gk[x] =
n=∞∑
n=0

(n+ 1
2 )n−k−1

2k+1 n! xn+ 1
2 ,

dann gelten mit
g0[x] =

√
−W0[−x]
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die Rekursionen

gk+1[x] = 1
2

∫
x−1 gk[x] dx; {k = 0, 1, 2, . . .}

Im Einzelnen gilt dann zum Beispiel

g1[x] =
√

−W0[−x]
(

1 + 1
3 W0[−x]

)
,

g2[x] =
√

−W0[−x]
(

1 + 4
9 W0[−x] + 1

15 W0[−x]
)
.

Mit Hilfe dieser Entwicklungen ist es im Prinzip möglich, die analytischen
Reihenkoeffizienten der Aufstiegsbahn einer Rakete nach α ≡ as/g exakt
durch rationale Zahlen auszudrücken.

A.2 Der Satz von Cranz
Wahrscheinlich ist der Begriff „Satz von Cranz“ historisch nicht ganz
richtig, aber in seinem Lehrbuch von 1910 hat C. Cranz einen elemen-
taren Lehrsatz über die Lage des zweiten Brennpunktes von einer Schar
von Keplerellipsen ausgesprochen, die dadurch entstehen, daß Körper mit
steigender Geschwindigkeit immer in der gleichen Richtung von einer Pla-
netenoberfläche abgeschossen werden. Man kann diesen Sachverhalt mit
den Formeln (6.119) und (6.122) verstehen. Der eine Brennpunkt liegt im
Erdmittelpunkt, der andere Brennpunkt hat dann vom Erdmittelpunkt
mit γ = v0/

√
g R den Abstand

2 a ϵ ≡
2
√

1 − (2 − γ2) γ2 cos[Θ]2
2 − γ2 R (A.6)

Legt man der Figur (A.2) ein Koordinatensystem mit dem Ursprung
im Erdmittelpunkt (0, 0) (erster Brennpunkt der Ellipsen) zugrunde, so
lauten die Koordinaten des zweiten Brennpunktes zunächst

x2 = 2 a ϵ sin[φ/2], y2 = 2 a ϵ cos[φ/2] (A.7)
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Fig. A.2: Der zweite Brennpunkt aller Keplerellipsen, die unter gleichem
Winkel Θ mit steigender Geschwindigkeit vom Punkt A abgeschossen wurden,
liegen auf einer geraden Linie, die durch den Abschussort geht und die
Steigung − cot(2Θ) hat.

Wegen (6.119) gilt aber

sin[φ/2] = γ2 sin(2Θ)
2
√

1 − (2 − γ2) γ2 cos[Θ]2

cos[φ/2] = 1 − γ2 cos[Θ]2√
1 − (2 − γ2) γ2 cos[Θ]2

Mit dem obigen Resultat ergibt sich so

x2 = γ2 sin(2Θ)
2 − γ2 R

y2 =
(

1 − γ2 cos(2Θ)
2 − γ2

)
R
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Durch Elimination von γ ergibt sich so für den geometrischen Ort des
zweiten Brennpunktes der Ellipsenschar die Geradengleichung

(A.8)y2 = R− cot(2Θ)x2

In der Figur (A.2) ist die Situation für den Elevationswinkel Θ = π/6
dargestellt.

Den Satz von Cranz kann man natürlich auf die optimalen Flugbah-
nen erweitern. Da dann der Abschusswinkel Θ selbst eine Funktion des
Geschwindigkeitsverhältnisses γ = v0/

√
g R ist, folgt nun

x2 = 2 γ2
√

1 − γ2

(2 − γ2)2 R; y2 =
(

1 − γ4

(2 − γ2)2

)
R (A.9)

Daraus folgt natürlich sofort

(A.10)x2
2 +

(
y2 − R

2

)2
=
(
R

2

)2
.

Der geometrische Ort des zweiten Brennpunktes aller optimalen Bahnen
ist somit ein Kreis, dessen Mittelpunkt auf halber Strecke zwischen Erd-
zentrum und Abschussort liegt, und dessen Radius dem halben Erdradius
entspricht.

A.3 Das ballistische Integral
Im Text wurde der Abstand der senkrechten Asymptote der idealen
ballistischen Kurve vom Abgangsort (siehe Fig.1.2) durch das Integral
(4.35)(quadratisches Luftwiderstandsgesetz)

(A.11)WA = v2
0
g

∞∫
− tan[Θ]

cos[Θ]2 dp
1 + k v2

0
g cos[Θ]2 [f(tan[Θ]) + f [p]]

dargestellt. Für k = 0 ist dieser Abstand natürlich unendlich, weil eine
Wurfparabel keine senkrechte Asymptote besitzt. Man kann versucht
sein, dieses Integral durch Verschiebung des Integrationsweges in die
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Fig. A.3: Das Verhalten der Funktion |F[p]| in der komplexen p - Ebene
für k v2

0/g = 1 und Θ = 0. Auf der negativen reellen Achse existiert eine
Polstelle, auf der imaginären Achse hat die Riemannsche Fläche einen Ver-
zweigungsschnitt.

komplexe Zahlenebene p zu vereinfachen oder gar durch Residuenbildung
an Polstellen zu berechnen. Es kommt hier also auf die Funktion

(A.12)F[p] = cos[Θ]2

1 + k v2
0

g cos[Θ]2 [f(tan[Θ]) + f [p]]

mit
f [p] = p

√
1 + p2 + ln[p+

√
1 + p2] (A.13)
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an. Beim Ausklinken einer Fliegerbombe ist Θ = 0 und die asymptotische
horizontale Flugweite ist dann

(A.14)WA = v2
0
g

∞∫
0

dp

1 + k v2
0

g f [p]
≡ v2

0
g

w[ν]

mit der Funktion

(A.15)w[ν] =
∞∫

0

dp

1 + ν f [p]

und dem einzigen Parameter ν = k v2
0/g. In Fig. (A.4) ist die Abhängigkeit

der Weite von ν deutlich zu sehen.

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4
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8

10

ν= k v0
2/g

w
[ν
]

Fig. A.4: Die horizontale Weite |w[ν]| einer ballistischen Kurve mit Θ = 0
in Abhängigkeit des Parameters ν = k v2

0/g.

A.4 Optimierung von Stufenraketen
Die Physik des Raketenantriebes und des Raketendesigns gehört eher
in das Gebiet der inneren Ballistik beispielsweise der Ingenieurwissen-
schaften. Aus historischen Gründen soll hier aber kurz das Problem
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des optimalen Designs von Stufenraketen behandelt werden, welches als
Erster Hermann Oberth in seinem Buch von 1929 für eine einstufige
Rakete und im Jahre 1941 in Peenemünde für eine mehrstufige Rakete
durchgeführt hat.

Vernachlässigt man der Einfachheit halber die Gravitation und den
Luftwiderstand, so gilt nach dem russischen Raketenpionier Konstantin
Eduardowitsch Ziolkowski (1857-1935) für die Geschwindigkeit v
einer Rakete die Formel

(A.16)v = cs ln
[
mZ

mB

]
.

Die Größe cs bedeutet hier die Ausstoßgeschwindigkeit der Triebwerks-
gase, mZ die Gesamtmasse der Rakete bei der Zündung und mB die
Masse der Rakete bei Brennschluss. Wenn jetzt eine einstufige Rakete
eine bestimmte Geschwindigkeit erreichen soll, muss bei vorgegebenen
cs das Massenverhältnis mZ/mB einen bestimmten Wert haben. Physi-
kalisch kann man fragen, wie hoch der Wirkungsgrad einer einstufigen
Rakete ist. Unter Wirkungsgrad verstehen wir hier das Verhältnis der
aufgewendeten Energie im Triebwerk zur erreichten Bewegungsenergie
der ausgebrannten Restrakete (Nutzlast + Struktur) bei Brennschluss
ist. Für den aufgewendeten Energieanteil E1 der Triebwerke nehmen wir
genähert die kinetische Energie der ausgestoßenen Gasmasse. Es gilt

(A.17)E1 = 1
2 (mZ −mB) c2

s.

Die kinetische Energie E2 der Rakete bei Brennschluss ist dagegen

(A.18)E2 = 1
2 mB c

2
s ln

[
mZ

mB

]2
.

Der Wirkungsgrad Q einer einstufigen Rakete ergibt sich so zu

(A.19)Q =
mB ln

[
mZ

mB

]2

mZ −mB
.

Definieren wir das Massenverhältnis

(A.20)p = mB

mZ
,
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so gilt auch

(A.21)Q[p] = p ln [p]2

1 − p
.

Die Grenzwerte sind Q[0] = Q[1] = 0. Dazwischen muss also ein Optimum
für den so definierten Wirkungsgrad liegen. Eine exakte Rechnung liefert

pm = −1
2 W0

[
−2 e−2] ,

= 0.20318 . . . (A.22)

wobei W0[ξ] die Lambertsche Funktion des oberen Zweiges bedeutet.
Der eigentliche Wirkungsgrad ergibt sich so zu

Q[pm] = −W0

[
− 2
e2

] (
2 + W0

[
− 2
e2

])
,

= 0.64761 . . . (A.23)

Das optimale Geschwindigkeitsverhältnis liegt jetzt bei

v

cs
= 2 + W0

[
− 2
e2

]
∼ 1.59362 . . . (A.24)

Der energetische Wirkungsgrad einer einstufigen Rakete kann also in
dieser Form knapp 65% erreichen. Die Endgeschwindigkeit beträgt etwas
mehr als das Anderthalbfache der Ausströmgeschwindigkeit cs.

Will man jetzt höhere Endgeschwindigkeiten erreichen, muss man
Mehrstufenraketen verwenden. Historisch ist dabei bemerkenswert, dass
die älteste bis heute bekannte Beschreibung einer Mehrstufenrakete schon
aus dem Jahre 1559 herrührt1. Sie stammt von dem Militärtechniker und
Raketenpionier Conrad Haas (1509 - 1576), der im Jahre 1551 mit
der Armee des Römisch-deutschen Königs Ferdinand I. als Zeugwart und
Büchsenmeister nach Hermannstadt in Siebenbürgen (rumänisch Sibui,
ungarisch Nagyszeben) kam und dort aufgrund der Türkeneinfälle die
Leitung des Kriegsarsenals übernahm. Zwischen 1529 und 1559 ergänzte

1Doru Todericiu: Preistoria Rachetei Moderne. Manuscrisul de la Sibiu 1529-1569,
Editura Academiei RSR, Bucursti, 1969
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Fig. A.5: Dreistufiges Raketendesign von Conrad Haas aus dem Jahre
1559, gezeichnet in einem Kunstbuch aus Hermannstadt in Siebenbürgen.
Das Buch wurde erst 1961 in einem Archiv (Staatsarchiv Sibiu, Varia II
374) entdeckt. Danach wurde die dreistufige Rakete erst wieder 1650 von dem
polnisch-litauischen Waffenkonstrukteur Casimir Simienowicz beschrieben.
(Quelle: wikimedia.commons)

er das von seinem Vorfahren Hans Haasenwein geerbte - zwischen
1450 und Mai 1459 angelegte Feuerwerksbuch von 1420, welches er den
Titel Kunstbuch gab (Staatsarchiv Sibiu, Varia II 374), um wesentliche
Teile2. Kurios mutet es heute an, dass auch H. Oberth gebürtig aus
Hermannstadt in Siebenbürgen stammte.

Bei der theoretischen Betrachtung wollen wir die Stufenaufteilung so
verstehen, dass von der Spitze der Rakete die Stufenzahlen von N,N −
1, N −2, . . . , 2, 1 nach unten gezählt werden. Die erste Stufe beinhaltet so
die gesamte Rakete. Zur theoretischen Beschreibung dieser Stufenrakete
mit N Stufen müssen jetzt drei Massenverhältnisse pn, qn, sn für jede

2Hans Barth: Conrad Haas - Raketenpionier und Humanist, Johannis Reeg Verlag,
Heilbronn 2005, 94 Seiten.
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Teilstufe n = 1, 2, . . . N definiert werden. Es gilt

pn = mB,n

mZ,n
= Masse bei Brennschluss der Stufe n

Masse bei Zündung der Stufe n

qn = mL,n

mZ,n
= Masse der Nutzlast der Stufe n

Masse bei Zündung der Stufe n

sn = mS,n

mZ,n
= Masse der Struktur der Stufe n

Masse bei Zündung der Stufe n

Für die Größe qn gilt auch

qn = mZ,n+1

mZ,n
= Masse bei Zündung der Stufe n+1

Masse bei Zündung der Stufe n

Die Gesamtmasse der Stufenrakete beim Start wäre dann mZ,1. Es gelten
außerdem die beiden alternativen Randbedingungen

mB,n = mL,n +mS,n (A.25)
mS,n = mB,n −mZ,n+1 (A.26)

und daher die wichtige Relation

(A.27)pn = qn + sn

Bei der Optimierung einerN -Stufenrakete kommt es im wissenschaftlichen
wie ökonomischen Bereich darauf an, das Verhältnis aus der Nutzlast der
letzten Stufe zur Gesamtmasse der Rakete beim Start zu maximieren.
Für die Nutzlast der letzten Stufe gilt aber jetzt

mL,N = qN mZ,N

= qN qN−1 mZ,N−1

= qN qN−1 qN−2 mZ,N−2

= . . .

Daraus folgt für das zu maximierende Verhältnis

(A.28)F = mL,N

mZ,1
=

N∏
n=1

qn

252



Unter der Voraussetzung, dass die Strahlgeschwindigkeit cs aller Triebwer-
ke gleich ist, gilt für die Endgeschwindigkeit der Rakete (ohne Gravitation
und Luftwiderstand)

(A.29)
v0 = −cs ln

[
N∏

n=1
pn

]

= −cs

N∑
n=1

ln[qn + sn]

Diese Endgeschwindigkeit geht als Nebenbedingung in das Extremwert-
problem ein. Das zu maximierende Funktional lautet also

(A.30)F =
N∏

n=1
qn + λ

N∑
n=1

ln[qn + sn],

wobei λ ein Lagrangescher Multiplikator darstellt. Die Strukturgrößen
sn sind dabei durch die Konstruktion vorgegeben. Gesucht wird ein Satz
optimaler qn Werte. Partielle Differentiation nach den qn Werten liefert
für jedes n die Bedingung

qn
∂F
∂qn

=
N∏

n=1
qn − λ

qn

qn + sn
≡ 0! (A.31)

Daraus folgt unmittelbar die Identität der Verhältnisse

s1

q1
= s2

q2
= . . . = sN

qN
≡ konstant

Dies bezeichnet man auch als die Gewichtsähnlichkeit einer optimier-
ten Stufenrakete mit identischen Strahlgeschwindigkeiten. Es ist jetzt
sicherlich sinnvoll, für alle Stufen

q1 = q2 = . . . = qN ≡ q;
s1 = s2 = . . . = sN ≡ s;

zu setzen. Durch Konstruktionsbedingungen und aus Stabilitätsgrün-
den ist der Parameter s in den meisten Fällen auf s ∼ 1/10 festgelegt.
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Der zu optimierende Parameter ist somit q mit 0 < q + s < 1. Die
Raketengleichung lautet jetzt vereinfacht

v0 = −N cs ln[q + s] (A.32)

Auflösen nach der Stufenzahl und Einsetzen in (A.28) führt zu dem
logarithmierten Funktional

(A.33)ln(F) = −v0

cs

ln[q]
ln[q + s] ,

welches durch Variation von q maximiert werden muss. Die notwendige
und hinreichende Bedingung für das Extremum q → q[s] lautet

(A.34)(q + s)q+s = qq

Diese Bestimmungsgleichung für eine optimale Unterteilung einer Stufen-
rakete wurde zum erstenmal von Hermann Oberth im Jahre 1941 in
Peenemünde abgeleitet und diskutiert. Ende 1945 erschien ein persönli-
cher Bericht in englischer Übersetzung an die Amerikanische Kommission,
in der es unter anderem hieß:3

I have investigated these questions in 1941 (as far as I know I
am the only one) in precise mathematical form and expressed
my views in a confidential report of 37 pages: „On the Best
Division of Step - aggregates“. Fourteen copies of the report,
which was countersigned by the chief of the Peenemünde Pro-
ject Division, graduate engineer Roth4, appeared at that time.
Several copies were burned during the 1943 bombing attack,
the rest remained in Peenemünde...5

3David Myhra: Hermann Oberth - One of the Fathers of Rocketry. Published by R.C.
Walters RCW Technology Sales & Services Inc. 15082 Iona Lakes Drive, Florida
33908, (2013)

4Ludwig Roth (1909-1967) war deutsch - amerikanischer Ingenieur und Projektleiter
des Peenemünder Büros für Zukunftsprojekte - verantwortlich insbesondere für
Stufenraketen wie dem Aggregat A9/A10/A11 und A12, die als Vorlage zur
späteren Entwicklung der Saturn 5 AS(501) dienten.

5Der 23 seitige Bericht wurde am 4. Oktober 1945 von Reynold Dreyer ins Englische
übersetzt und erschien unter dem Titel: „The Design of a Long - Range Rocket“ .
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Die transzendente Gleichung (A.34) lässt sich numerisch oder durch eine
Potenzreihe nach dem Strukturparameter s lösen. Betrachtet man die
Taylorreihe nach dem Parameter s

(q + s)q+s − qq = qq (1 + ln[q]) s+O[s]2,

so ergibt sich in niedrigster Ordnung in s die Grenze q = 1/e; gültig
für sehr kleine Strukturparameter s. Die Größe e bezeichnet hier die
Eulersche Zahl mit ln[e] = 1. Genauer gilt

(A.35)q[s] = 1
e

(
1 − 1

2 e s+ 1
24 (e s)2 + 1

1920 (e s)4 + 13
580608 (e s)6 + . . .

)
Numerische Rechnungen zeigen, dass q[s] mit steigendem s stetig abfällt
und bei s = 1 den asymptotischen Grenzwert null erreicht. Außerdem
gilt q[1/4] = 1/4. In der Umgebung dieses kritischen Punktes gilt dann
die Entwicklung

q[s] = 1
4 +

(
1 − 1

ln[2]

)(
s− 1

4

)
+ . . .

Auch gilt für die Umkehrung von (A.34) nach s

(A.36)q + s = exp [W0[q ln q]] .

Für ein optimiertes q läßt sich so der dazugehörige Strukturparameter s
ableiten. Die optimierte Stufenzahl N der Rakete ergibt sich mit (A.32)
zu

N = −v0

cs

1
ln[q + s] (A.37)

oder als Reihenentwicklung

(A.38)N = v0

cs

(
1 + 1

2 e s+ 1
6 (e s)2 + 1

16 (e s)3 + 1
45 (e s)4 + . . .

)
Die Stufenzahl hängt also im Wesentlichen von der zu erreichenden
Endgeschwindigkeit v0 ab, die mit Gravitation und Luftwiderstand noch
nach „Oben“ korrigiert werden muss. Die Zahl wird im Allgemeinen nicht
ganzzahlig sein. Dies macht die Einführung von sogenannten Boostern
(Verstärkern, Hilfsraketen) sinnvoll, die mit der ersten Stufe gleichzeitig
gezündet werden, aber eher abgeschaltet werden. In diesem Sinne wäre
die Ariane 5 eine 2.5 stufige Rakete.
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Fig. A.6: Optimale Massenaufteilung einer zweistufigen und dreistufigen
Rakete im Grenzfall s = 0, also vernachlässigbarer Strukturmasse. Auffällig
ist bei der dreistufigen Variante, wie massiv die erste Stufe gegenüber den
anderen Stufen sein muss.

Um die gestapelten Einzelmassen der einzelnen Stufen zu berechnen,
setzen wir die Gesamtmasse mZ,1 der Rakete beim Start gleich M . Dann
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Fig. A.7: Die Funktion q → q[s] bei der Optimierung von Raketenstufen,
berechnet nach (A.34).

gilt mit den obigen Definitionen

m1 = (1 − q)M
m2 = q (1 − q)M
. . . = . . .

mN−1 = qN−2 (1 − q)M
mN = qN−1 M

Es ist hier interessant, die obigen Formeln mit den damaligen Design-
Daten der Saturn V AS(501) aus den 1960er Jahren zu vergleichen.
Die erste Stufe hatte mit vollen Tanks eine Gesamtmasse von etwa
m1 ∼ 2145 Tonnen, die zweite Stufe m2 ∼ 479 Tonnen und die dritte
Stufe m3 ∼ 117 Tonnen. Die vierte Stufe (Nutzlast) bestand im Wesent-
lichen aus dem Apollo Service Modul und der Mondfähre, die jeweils eine
Masse von 25 und 15 Tonnen hatten. Man kann also genähert m4 ∼ 40
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Tonnen annehmen. Für die Gesamtmasse der Rakete ergibt sich so die
Abschätzung M ∼ 2781 Tonnen. Diese Daten entsprechen recht gut
einem q-Wert knapp unterhalb von q ∼ 1/4 und knapp oberhalb von
s ∼ 1/4.

Unabhängig von der Stufenzahl einer optimierten Rakete ergibt sich im
Grenzfall eines sehr kleinen Strukturparameters der genäherte universelle
Ausdruck

(A.39)mn ∼ e−n+1 (1 − e−1) M
n = {1, 2, . . . , N − 1}

und für die letzte Stufe

(A.40)mN ∼ e−N+1 M.

Die Summe aller Einzelstufen mn ergibt natürlich immer die Gesamtmasse
M . In Fig. (A.6) sind für N = 2 und N = 3 die Massenaufteilungen der
einzelnen Stufen für den obigen Spezialfall s = 0 anschaulich geometrisch
dargestellt.
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